

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut
FEL14 – Basel 25.08.14
Observation of SASE at the
SwissFEL Injector Test Facility *R. Ganter on behalf of the SwissFEL Team*

SwissFEL Injector Test Facility

Test facility for SwissFEL components.

Courtesy of M. Pedrozzi

SwissFEL Injector Test Facility

Test facility for SwissFEL components.

Courtesy of M. Pedrozzi

U15 Undulator Installation in Tunnel

December 2013: Installation in Tunnel of the undulator

U15 Parameters: λ_U=15 mm; In vacuum – Hybrid; 1.0 < K < 1.8 4 m long; 17 tons; 266 periods; Nd-Fe-B (Dy)

Operation started on 15th of January:

After a few hours operation and some compression: 1st SASE FEL lasing at PSI.

Operation started on 15th of January:

After a few hours operation and some compression: 1st SASE FEL lasing at PSI.

Operation started on 15th of January:

After a few hours operation and some compression: 1st SASE FEL lasing at PSI.

YAG Screen

Operation started on 15th of January:

After a few hours operation and some compression: 1st SASE FEL lasing at PSI.

Distance from U15 exit

Z=2.2 m

Z=4.0 m

130 MeV; 200 pC ~100 A K=1.28 λ=210 nm

Measured divergence = 0.3 mrad (-> SASE)

Comparison to Genesis FEL divergence

Measurement:

Simulation:

SASE fluctuations

1st Screen (0.5 m downstream U15)

130 MeV; 200 pC ~100 A K=1.28 λ=210 nm

This is scintillation on YAG ... YAG is not so efficient at 210 nm.

Intensity fluctuations should follow a gamma distribution: $p(E) = \frac{M^M}{\Gamma(M)} \left(\frac{E}{\langle E \rangle}\right)^{M-1} \frac{1}{\langle E \rangle} \exp\left(-M \frac{E}{\langle E \rangle}\right)$

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

Undulator Tunability

Conclusions:

- Good preparation for future SwissFEL Commissioning: team integration, ...
- Test of Alignment procedure based on "Alignment quadrupoles": MOP040
- Measurements of undulator kick angles (Vertical plane!): MOP041
- Observation of SASE signal (confirmation of e- beam and U15 quality): MOP053

Beam Loss Monitors

Courtesy of Cigdem, Edwin and Florian

U15 Alignment Quadrupoles

Pneumatic support to drive In and Out the Alignment Quadrupole

U15 Alignment: horizontal plane

200 pC; 200 MeV

Courtesy of M. Aiba

Light shots with 100 MeV electron

Spectrometer – Single Shot

CCD camera counts (#×10³) . . wavelength (nm)

FEL performance for nominal conditions

- FEL is in linear exponential gain
- Strong reduction of radiation divergence w.r.t. spontaneous radiation
- In the measurements we worked mostly at longer wavelengths (lower E) in exponential mode
- Saturation can only be reached if non-linear compression

SITF Layout with U15

Undulator side components

