The Creation of Large-Volume, Gradient-Free Warm Dense Matter with an X-Ray Free-Electron Laser

<u>A. Lévy</u>, P. Audebert, R. Shepherd, J. Dunn, M. Cammarata, O. Ciricosta, F. Deneuville, F. Dorchies, M. Fajardo, C. Fourment, D. Fritz, J. Fuchs, J. Gaudin, M. Gauthier, A. Graf, H. J. Lee, H. Lemke, B. Nagler, J. Park, O. Peyrusse, A. B. Steel, S. M. Vinko, J. S. Wark, G. O. Williams and R. W. Lee LULI, École Polytechnique, France **UPMC**, Paris 06, France LLNL, Lawrence Livermore National Laboratory, USA LCLS, SLAC National Accelerator Laboratory, USA Department of Physics, **Clarendon Laboratory**, UK **CELIA**, Univ. Bordeaux, France Instituto Superior Técnico, Portugal European XFEL GmbH, Germany *Institute for Material* Dynamics at Extreme **Conditions**, Berkeley, USA

1. Motivation

2. Experimental method

1. Motivation

2. Experimental method

1. Motivation

2. Experimental method

FEL2014 – Basel, Switzerland – 25-29 August 2014

Target	X-ray focal spot	X-ray duration	X-ray attenuation
2 µm	15x17 μm²	63 fs / 115 fs	100 % / 50 % / 25 %
2 µm	5x9 μm²	63 fs / 115 fs	100 % / 50 % / 25 %
0.5 μm	15x17 μm²	<mark>63 fs</mark> / 115 fs	100 % / 50 % / 25 %
0.5 μm	5x9 μm²	63 fs / 115 fs	100 % / 50 % / 25 %

□ 1D Hydrodynamic code **ESTHER**

P. Combis – CEA-DAM

X-ray energy deposition : Cold opacities tables Equation of states : BLF

□ 1D Hydrodynamic /Atomic code **XRIM**

- O. Peyrusse CELIA
 - X-ray energy deposition : Photo-absorption Auger decay

Equation of states : QEOS or BLF

. Experimental method

3. Results

al method

3. Result

A. Lévy, P. Audebert, J. Fuchs, M. Gauthier

LULI, École Polytechnique, France UPMC, Paris 06, France

R. Shepherd, J. Dunn, J. Park, A. B. Steel, A. Graf

LLNL, Lawrence Livermore National Laboratory, USA

M. Cammarata, D. Fritz, H. J. Lee, H. Lemke, B. Nagler

LCLS, SLAC National Accelerator Laboratory, USA

O. Ciricosta, S. Vinko, J. Wark

Department of Physics, Clarendon Laboratory, UK

F. Deneuville, F. Dorchies, C. Fourment, O. Peyrusse

CELIA, Univ. Bordeaux, France

M. Fajardo, G. O. Williams

Instituto Superior Técnico, Portugal

<u>J. Gaudin</u>

European XFEL GmbH, Germany

<u>R. W. Lee</u>

Institute for Material Dynamics at Extreme Conditions, Berkeley, USA

Heating uniformity - yes

X Spatial resolution of the TASRI

X XFEL spot spatial uniformity