

Regenerative Laser Undulator X-ray (ReLUX) Free-Electron Laser

Dinh C. Nguyen, Petr M. Anisimov, Bruce E. Carlsten, Los Alamos National Laboratory

James E. Lawler, Physics Department, University of Wisconsin-Madison

ABSTRACT

We present a new high-gain x-ray FEL concept based on a nearly copropagating sheared laser undulator [1] and regenerative amplification [2] of a single x-ray pulse via successive interactions between a single electron bunch and a TW laser undulator pulse. This new x-ray FEL configuration is called the Regenerative Laser Undulator X-ray FEL which uses a relativistic electron beam crossing a sheared TW laser beam at small angles. The generated x-ray pulse follows a zigzag path between Bragg reflectors and repetitively interacts with the laser pulse and the electron bunch. Between interactions, the electron bunch is advanced longitudinally to maintain its overlap with the x-ray pulse. The laser pulse follows a different path that includes an optical delay to synchronize it with the electron and x-ray pulses. The laser wave-front tilt and width are designed to increase the interaction time to provide many oscillation cycles. We present a ReLUX FEL design that can produce coherent 12-keV photons with 2 GeV electron beams. Timedependent Genesis simulations with 3 kA peak current and a 1D rho of 0.00054 yield ~0.6 GW saturated power after 10 sections.

UNDULATOR/TRANSPORT SECTION

Bragg angle

 $\vartheta = \sin^{-1} \left(\frac{\lambda}{2d} \right) = 9.5^{\circ}$

FEL angular divergence

 $\Delta \vartheta = \frac{\lambda}{\pi \sigma_r} = 15 \mu rad$

 $\frac{\Delta \lambda_X}{\lambda} = \Delta \vartheta \cot \vartheta = 9 \times 10^{-5}$

Relative linewidth

Si(111) Bragg reflector (d = 3.1356 Å)

Si(111) reflection - One bounc

LASER BEAM FOCUSING OPTICS

Only a portion of the 7-cm wide laser beam is focused to 7- μ m 1/e² radius spot by a cylindrical mirror. The laser focused spot moves along the 2.6-m length of the cylindrical mirror such that the electron beam always interact with a 7- μ m radius spot.

Cylindrical mirror

[1] J.E. Lawler et al., J. Phys. D: Appl. Phys. 46 (2013) 325501. [2] D.C. Nguyen et al., NIMA 429 (1999) 125; Z. Huang et al., PRL 96 (2006) 144801

SMALL-ANGLE SCATTERING GEOMETRY

Consider the collision between a relativistic electron (black) traveling in the +z direction with a laser beam (red) at small angle θ in the lab frame

X-ray wavelength $\lambda_X = \lambda_L \frac{1 + K^2}{(1 + K^2)^2}$

ReLUX FEL Parameter	Symbol	Value	Unit
Electron beam energy	E _b	2	GeV
Peak current	/ _{pk}	3	kA
rms normalized emittance	<i>E</i> n	0.1	μm
rms relative energy spread	σ_{γ} / γ	0.01%	
rms bunch length	σ_{z}	2.5	μm
rms transverse size	$\sigma_{\!x}$	7	μm
Laser wavelength	λ_{L}	1.05	μm
Lab-frame angle	heta ^{lab}	1.5	deg
Laser power	PL	500	TW
Laser 1/e ² radius in y	w ₀	7	μm
Laser full width in x	W ^{lab}	7	cm
Equivalent undulator period	λ_{u}	3.06	mm
rms dimensionless undulator strength	К	0.203	
Equivalent undulator length	L _u	2.67	m
Number of oscillations (periods) per undulator	N _u	873	
X-ray wavelength	λ_{X}	1.04	Å
FEL rho parameter (1D)	$ ho_{ ext{1D}}$	0.054%	
3D Gain length	LGAD	0.39	m

The number of undulator periods is best calculated by dividing the interaction length by the laser wavelength in the electron rest frame

GENESIS SIMULATIONS

- 1. Time-dependent SASE Genesis simulation for the first undulator.
- 2. Spectral filtering of the SASE signal with a Si(111) Bragg reflector.
- 3. Time-independent Genesis simulations for subsequent sections, using energy spread from the previous section with no initial microbunching

In electron rest frame, the Doppler shifted laser beam points in the -z' direction.

Dimensionless undulator strength

 $K^2 = \frac{2r_e I\lambda_L^2}{m_0 c^3 \pi}$

 $\lambda_{L}^{'} \approx rac{2\lambda_{L}}{\gamma(\theta^{lab})^{2}}$

Laser wavelength in electron rest frame e-Incident laser beam

SHEARED WAVEFRONT LASER PULSE

The laser direction of propagation is tilted at an angle θ^{lab} with respect to the electron beam axis. The equivalent undulator period is much longer than the laser wavelength.

Equivalent undulator period

$\lambda_{u}^{eq} pprox$	\sim	$2\lambda_L$
	\sim	$\overline{\left(heta ^{lab} ight) ^{2}}$

(assumed to be washed out in the chicane).

Time-independent & time-dependent Genesis simulation: peak power vs undulator number

Filtered SASE spectrum to be injected into the 2nd undulator

TIME-DEPENDENT SIMULATIONS

- 1. Time-dependent Genesis simulation with spectral filtering with a Si(111) Bragg reflector between sections (no retuning).
- 2. The re-injected electron bunch has energy spread from the previous section and no initial microbunching.
- 3. The ReLUX output spectrum shows fewer spikes and narrower linewidth than SASE.

A single multi-TW laser pulse can be used repeatedly as multiple laser undulators to provide large FEL gains over many transport sections.

LA-UR 14-26428

Wavelength (nm)