Scanning Problems of FLARE, a THz-FEL with a waveguide

Denis Arslanov, Rienk Jongma, Lex van der Meer, Milo Vermeulen (Radboud University, Nijmegen), Masaki Fujimoto (ISIR, Osaka), Vasyl Yatsyna (University of Gothenburg, Gothenburg), Vitali Zhaunerchyk (Uppsala University, Uppsala)

5 m 1 40 periods to 5 m 1 40 periods to 10 period	Energy spre Electron bu Macropulse Normalized Electron bu
layout	FEL parame Undulator p
	Cavity lengt Cavity mirro Cavity mirro Rayleigh rar Waveguide Waveguide

Micronulse ren ratet	GH7	2 998	
Macropulso rop, rate		2.550	
Macropulse duration	112	≤ 10 < 12	
		10 to 15	
Electron beam energy		10 10 15	
Electron hunch duration (mas)	70	≈ 0.5	
Electron bunch duration (rms)	ps A	new	
Macropulse current	A	0.6	
Normalized emittance	mm mrad	≈ 50	
5			
+ recently also 20 MHz			
† recently also 20 MHz			
† recently also 20 MHz			
† recently also 20 MHz		en an	e C
† recently also 20 MHz			
† recently also 20 MHz			
† recently also 20 MHz			
† recently also 20 MHz FEL parameters Undulator period		110	

Cavity length	mm	7500
Cavity mirrors width	mm	200
Cavity mirrors radii of curvature	mm	4810
Rayleigh range	mm	2000
Waveguide gap	mm	10
Waveguide wall material	Stainless steel	

Low-loss π-*polarized resonator eigenmodes:*

FEL resonance condition: $(k_{z,n} + k_u + g_m)\beta_z - k = 0$

wave
$$k_{m,n}^f = \frac{\beta_z \cdot g_m}{1 - \beta_z^2} \cdot \left[1 + \beta_z \sqrt{1 - \frac{1 - \beta_z^2}{\beta_z^2 \cdot g_m^2}} \cdot \left(\frac{k_{\perp,n}}{k_u}\right)^2 \right]$$

$$slow \ wave \qquad k_{m,n}^s = \frac{\beta_z \cdot g_m}{1 - \beta_z^2} \cdot \left[1 - \beta_z \sqrt{1 - \frac{1 - \beta_z^2}{\beta_z^2 \cdot g_m^2}} \cdot \left(\frac{k_{\perp,n}}{k_u} \right)^2 \right]$$

$l_u = undulator period$ $d = gap \ between \ plates$ $L_R = Rayleigh range$ $k_u = \frac{2\pi}{l}$ $k_{\perp,n} = n \cdot \frac{\pi}{d}$

 $\beta_z = \left| 1 - \frac{-w}{\gamma^2} \right|$ $g_m = \left(1 - \frac{m + 0.5}{k_u \cdot L_R}\right)$

 $(k^{f,s})^2 = (k_z^{f,s})^2 + k_\perp^2$

Remarks:

 \blacktriangleright no solution for n=2 for $k/2\pi < 20$ cm⁻¹

- \blacktriangleright no solution for n>2 for $k/2\pi < 50$ cm⁻¹
- $\gg k^{s}/2\pi < 2.5 \text{ cm}^{-1}$

▶ @ 15 MeV and 20 cm⁻¹:

- • $\Delta m = 2 \rightarrow -0.4 \ cm^{-1}$
- Group velocity $v_g/c = 0.9997$
- v_g dispersion: 0.5 mm/cm⁻¹ per roundtrip

The problem:

FLARE

fast

spontaneous emission from autocorrelation measurements

spontaneous emission using sideband generation in ZnTe and a 10 ns dye laser

Time (µs)

22

spectral dependence

power oscillations at the cavity roundtrip frequency

Main observations:

- 1. Appearance of as yet unexplained low-frequency peaks in spontaneous emission spectra due to cavity
- Spontaneous emission power $10^{-5} 10^{-2}$ of laser power, 2. depending on small changes in beam optics
- Modulation in intensity of spontaneous emission at 0.2 3. cm⁻¹ rather than at 0.1 cm⁻¹, the inverse of the interpulse distance at 3 GHz
- Strong oscillations of laser power at cavity roundtrip frequency (50 MHz)

as a function of cavity length (derived from lasing positions)

- Synchronous cavity lengths deviate from values 5. calculated for the expected modes
- No obvious difference in spontaneous emission at 6. tuning gaps as compared to lasing wavelengths
- No obvious change in tuning gaps when reducing the micropuls rep. rate to 20 MHz (*preliminary, not shown*)
 - **Any suggestions ?**

