LCLS-II BUNCH COMPRESSOR STUDY: 5-BEND CHICANE*

D.Z. Khan[#], T.O. Raubenheimer, SLAC, Menlo Park, CA 94025, USA

ABSTRACT

In this paper, we present a potential design for a bunch compressor consisting of 5 bend magnets which is designed to compensate the transverse emittance growth due to Coherent Synchrotron Radiation (CSR). A specific implementation for the second bunch compressor in the LCLS-II is considered. The design has been optimized using the particle tracking code, ELEGANT. Comparisons of the 5-bend chicane's performance with that of a symmetric 4-bend chicane is shown for various compression ratios and bunch charges. Additionally, a one-dimensional, longitudinal CSR model for the 5-bend design is developed and its accuracy compared against ELEGANT simulations.

LO	L1		L2	L3	Lf	
φ=**	φ=–12.7°		φ=-21°	<i>φ</i> =0	φ=±34 BC3	
$V_0 = 100 \text{MV}$	$V_0 = 211 \text{MV}$	HL	V ₀ =1446 MV	$V_0 = 2206 \text{MV}$	V ₀ =202 MV E=4.0 GeV	
I _{pk} =12 A	$I_{pk} = 12 \text{ A}$	φ=–150°	I _{pk} =80 A	I _{pk} =1.0 kA	I _{pk} =1.0 kA R ₅₆ =0	
σ_z =1.02 mm	σ_z =1.02 mm	V ₀ =64.7 MV	$\sigma_z = 0.15 \mathrm{mm}$	σ_z =9.0 μ m	$\sigma_z = 9.0 \mu m \sigma_s = 0.13 \%$	
CM01	CM02,03	3.9GHz	CM04 CM15	CM16 CM33	CM34,35	~

DESIGN IMPLEMENTATION & ENGINEERING CONSIDERATION

Although the benefits of the 5-bend chicane is clearly evident, its complexity does provide some difficulties in actually engineering the design. We have revised the design with the following:

Fig. 6: Revised 5-bend chicane exhibiting highly optimized

Parameter	Symbol	5-Bend
		Chicane
Energy	E_0	1.6 GeV
Momentum	$ R_{56} $	59.9 mm
Compaction		
-		
Chicane Total	L_T	17.8 m
Length	-	
First Drift	L_D	4.4 m
Length		
Second Drift	L_F	9.4 m
- 1		

Length Third Drift 1.3 m L_G Length Bend Angle 1 $|\theta_1|$ 0.087 rad

 $|\theta_2|$

0.046 rad

Bend Angle 2

Fig. 1: A diagram of the LCLS-II beamline with relevant component details. LCLS-II plans to utilizes a two-stage magnetic chicane compression system; BC1 and BC2.

LCLS-II CURRENT BUNCH COMPRESSOR

The currently planned compression scheme of LCLS-II consists of a twostage magnetic chicane system. Each compressor is comprised of the

Parameter	Symbol	4-Bend Chicane
Electron Energy	E_0	1.6 GeV
Momentum	$ R_{56} $	59.9 mm
Compaction		
Chicane Tota	al L_T	23.0 m
Length	_	
First Chicane Dri	ft L_D	9.8 m
Length		
Bend Angle 1	$ \theta_1 $	0.05 rad
Eff. Length C	If L_B	0.54 m
Magnet 1		
Dispersion After	er $ \eta_x $	562 mm
Magnet 2		
0.05	ີ ເຊັ່ 0.5	
0.00		
-0.05	Wome Wome	
	Section (₹ -0.5) E	

t (sec)

4TH BEND

emittance preservation.

Fig. 7 (Left to right): The corrected transverse emittance (ecnx, ecny), normalized energy spread, longitudinal energy phase space, and the current profile for the revised 5-bend chicane.

5-BEND PERFORMANCE EVALUATION

For a comprehensive performance evaluation of the revised 5-bend chicane we compared its performance with that of the currently planned 4bend chicane for two common bunch distributions and various compression ratios. The results are displayed in the tables below. The revised 5-bend chicane clearly outperforms the 4-bend chicane in emittance preservation for all cases.

Momentum	Final Bunch	4-Bend	5-Bend	Momentum	Final Bunch	4-Bend	5-Bend
Compaction	Length (µm)	ϵ_x Growth	ϵ_x Growth	Compaction	Length (µm)	ϵ_x Growth	ϵ_x Grov
$ R_{56} $ (mm)		(%)	(%)	$ R_{56} $ (mm)		(%)	(%)
45.3	5.5	239	8	36.6	5.5	178	23
45.1	6.5	171	5	36.3	6.5	135	13
44.9	7.5	113	3	36.0	7.5	91	8
44.7	8.5	71	3	35.7	8.5	59	5
44.5	9.5	45	2	35.4	9.5	37	4

Fig. 3: Top/Middle: The momentum difference for each particle in each bend in the planned LCLS-II BC2 4-bend chicane generated with ELEGANT. The CSR wake begins to take form in the third bend where the bunch is compressed to 7 microns. Bottom: (From left to right) The normalized energy spread, longitudinal energy phase space, and the current profile of the beam at the exit of BC2.

LINEAR CSR MODEL

We developed a numerical treatment of the linear kick model for the emittance dilution cancelling 5- bend chicane, and test its results with that of ELEGANT. We have included the effects of bunch compression by approximating the bunch length as a linear function of angle traversed through the bending magnets :

$$\sigma_z(\theta) \to \frac{\sigma_{zbeg} - \sigma_{zend}}{\theta_B} \theta + \sigma_{zbeg}$$

On the treatment of the CSR self-interaction in the system we used two methods:

Steady State Regime

The CSR self-interaction is considered to be constant throughout the bunch's trajectory in the magnet (the slippage length approaches infinity) and we can calculate the RMS spatial and angular kicks by:

 $<\Delta x_i >= \int R_{16i}(s) \,\delta_{RMS-i} ds$ $<\Delta x_i^2>=\left(\int R_{16i}(s)\,\delta_{RMS-i}ds\right)^2$

$$\langle \Delta x'_i \rangle = \int R_{26i}(s) \,\delta_{RMS-i} ds \langle \Delta x'_i^2 \rangle = \left(\int R_{26i}(s) \,\delta_{RMS-i} ds \right)^2$$

Transient State Regime

We account for the transient effects of the CSR self-interaction as the beam is entering the magnet:

dispersion and slope of dispersion, corrected normalized transverse emittance (ecnx, ecny), normalized energy spread, longitudinal energy phase space, and the current profile.

*Work supported by Department of Energy Contract No. DE-AC02-76SF00515 #donish@SLAC.stanford.edu

THP027