Linear Accelerator Design for the LCLS-II FEL Facility

P. Emma, J. Frisch, Z. Huang, H. Loos, A. Marinelli, T. Maxwell, Y. Nosochkov, T. Raubenheimer, J. Welch, L. Wang, M. Woodley, *SLAC*, Stanford, CA 94309, USA;

A. Saini, N. Solyak, *FNAL*, Batavia, IL 60510, USA; J. Qiang, M. Venturini, *LBNL*, Berkeley, CA 94720, USA

ABSTRACT

The *LCLS-II* is an FEL facility proposed in response to the July 2013 BESAC advisory committee, which recommended the construction of a new FEL light source with a high-repetition rate and a broad photon energy range from 0.2 keV to at least 5 keV. A new CW 4-GeV electron linac is being designed to meet this need, using a superconducting (SC) L-band (1.3 GHz) linear accelerator capable of operating with a continuous bunch repetition rate up to 1 MHz at ~16 MV/m. This new 700-m linac is to be built at SLAC in the existing tunnel, making use of existing facilities and providing two separate FELs, preserving the operation of the existing FEL, which can be fed from either the existing copper or the new SC linac. We briefly describe the acceleration, bunch compression, beam transport, beam switching, and electron beam diagnostics. The high-power and low-level RF systems, and cryogenic systems are not covered here.

Table 3: Longitudinal Stability Tolerances at 100 pC/bunch				
Parameter (rms)	symbol	Tol.	N	unit
			cav's	
Phase error in L0	$\Delta \varphi_0$	0.040	7	degL
Phase error in L1	$\Delta \varphi_1$	0.039	15	degL
Phase error in HL	$\Delta \varphi_H$	0.039	15	degH
Phase error in L2	$\Delta \varphi_2$	0.095	90	degL
Phase error in L3-linac	$\Delta \varphi_3$	1.8	150	degL
Amplitude error in L0	$\Delta V_0/V_0$	0.026	7	%
Amplitude error in L1	$\Delta V_1/V_1$	0.039	15	%
Amplitude error in HL	$\Delta V_H/V_H$	0.039	15	%
Amplitude error in L2	$\Delta V_2/V_2$	0.095	90	%
Amplitude error in L3	$\Delta V_3/V_3$	0.12	150	%
Laser timing error*	Δt_{c}	0.31	-	ps
Bunch charge error	$\Delta Q/Q_0$	1.5	-	%
Current reg. in LH	$\Delta I_{\rm H}/I_{\rm H}$	0.005	-	%
Current reg. in BC1	$\Delta I_1/I_1$	0.005	-	%

BERKELEY LAB

Figure 1: LCLS-II layout in existing SLAC tunnels (3.8 km).

Table 2: Electron Beam Parameters (Nominal and Range)				
Parameter T	sym.	nom.	range	unit
Final energy	E_f	4.0	2.0-4.1	GeV
Bunch charge	Q_b	100	10-300	pC
CW linac bunch rate	fь	0.62	0-0.93	MHz
Avg. linac current	Iav	62	1-300	μA
Avg. linac e ⁻ power	Pav	0.25	0-1.2	MW
Emittance (norm., $x \& y$)	$\gamma_{\mathcal{E}\perp -s}$	0.45	0.2-0.7	μm
Final peak current	I_{pk}	1.0	0.5-1.5	kA
Final rms bunch length	σ_{zf}	8.6	0.6-52	μm
Compression factor*	C_T	8 5	25-150	-
Final slice E-spread, rms	σ_{Es}	500	125-1500	keV
Final peak current Final rms bunch length Compression factor* Final slice <i>E</i> -spread, rms	7ε1-s Ipk σzf CT σEs	1.0 8.6 85 500	0.2-0.7 0.5-1.5 0.6-52 25-150 125-1500	μm kA μm - keV

* Total magnetic, from injector-end (100 MeV) to undulator.

- Current reg. in BC2 $\Delta I_2/I_2$ 0.003 %
- * The gun timing error is compressed by 3.85, from gun to 100 MeV, due to velocity compression.

Figure 5: Jitter/tracking simulation using *LiTrack* and rms (Gaussian) stability tolerances of **Table 3**, confirming the final expected stability of $(\Delta E/E)_{rms} \approx 0.009\%$, $(\Delta I_{pk}/I_{pk})_{rms} \approx 3.7\%$, and $\Delta t_{rms} \approx 20$ fs rms. It also may be possible to do better.

Figure 6: Fast beam spreader system (plan view) with vertical "kicker" and two "2-hole septa" magnets which bend horizontally. This schematic shows the geometry rather than the complete optics (*e.g.*, not all quads are shown here).

100-pC machine layout: July 23, 2014; v21 ASTRA run

Figure 2: Linac layout with RF and compression parameters. Most RF gradients are held at less than 16 MV/m, the HL section is a 3.9-GHz linac, and LH is the laser heater.

Figure 7: Full LCLS-II layout (plan view) with switching into the SXR undulator (top-right) and HXR undulator (lower-right) at up to a 1-MHz switching rate using a fast "kicker".

Table 4: Resistive-Wall	Wakefields	of Long	Transport
-------------------------	------------	---------	-----------

Beamline Section	Pipe Length (m)	Pipe Radius (mm)	Pipe Material	Cond. /10 ⁶ (Ohm-m) ⁻¹
Linac Exten.	250	24.5	stainless	1.37
Dog-Leg #1	78	19	stainless	1.37
Bypass Line	1734	24.5	stainless	1.37
LTU-SXR	827	24.5	Alum.	36.0
LTU-HXR*	778	20.6	Copper	58.0

* Much of this pipe exists and is copper plated to reduce wakes.

Figure 8: *Elegant* tracking results of longitudinal phase space (100 pC/bunch) including resistive-wall wakes and CSR in the bends. Space charge is only included in the *ASTRA* injector tracking. The energy chirp (middle) has been flattened by RW-wall wakefields.

Figure 4: Focusing lattice from cathode to SXR dump at 4 GeV. The SXR undulator is near the end of the line at $s \approx 3600-3700$ m. The two lines split (to HXR or SXR) at $s \approx 2776$ m.

Figure 9: *Elegant* tracking results showing slice emittance (left) and slice energy spread (right), both within FEL requirements ($\gamma \epsilon_{x,y} < 0.45 \mu m$ and $\sigma_E/E < 0.015\%$ rms in core).