FEL 2014 36 $36^{\text {th }}$ International Free Electron Laser Conference

ERROR ANALYSIS FOR LINAC LATTICE OF HARD X-RAY FEL LINE IN PAL-XFEL*

H. Yang\#, J. H. Han, H. -S. Kang, and I. S. Ko
Pohang Accelerator Laboratory, Pohang 790-784, Korea

*Work supported by MSIP, Korea. "highlong@postech.ac.kr

Linac Lattice of PAL-XFEL

Linac Parameter for HX FEL

Beam energy (GeV)	10
Beam charge (nC)	0.2

Photocathode RF-gun

S-band

Dynamic Error Simulation

Linear Interpolation Method (ref. LCLS CDR)

Error Study with Random Errors

Error Setting

Beam Jitter

Referexe	${ }^{2989}$	10.04	261983580	0.488	0.25	${ }^{12063}$	${ }^{52123}$
Tape	10\%	0.025	2015	10\%			
$\begin{gathered} \text { (with } \\ 200 \text { samples) } \end{gathered}$	$s{ }^{2} /{ }_{0}$	$\pm E_{1}$	Δ_{t}	Nobue	2 mmom	$s R^{\prime}$	Who
$\substack{\begin{subarray}{c}{\text { Singr } \\ (\text { STD }} }} \\ {\hline} \end{subarray}$	8.74\%	0.009%	14.015	${ }^{6.99 \%}$	0.007\%	8.60%	1.16\%
	10.14\%	0.015\%	19.075	8.07\%	0.008\%	9.9\%\%	1.2\%

Simulation with Misalignment

Alignment Tolerance of BC HOM of Bending Magnets

HOM	BC1	BC2	BC3
$\mathrm{b}_{1} / \mathrm{b}_{0}$	-	-1.60×10^{-16}	-1.60×10^{-16}
$\mathrm{~b}_{2} / \mathrm{b}_{0}$	-0.93×10^{-4}	-0.80×10^{-4}	-0.80×10^{-4}
$\mathrm{~b}_{3} / \mathrm{b}_{0}$	-	-	-
$\mathrm{b}_{4} / \mathrm{b}_{0}$	3.68×10^{-4}	-0.57×10^{-4}	-0.57×10^{-4}
$\mathrm{~b}_{5} / \mathrm{b}_{0}$	-	-	-
$\mathrm{b}_{6} / \mathrm{b}_{0}$	2.57×10^{-4}	0.58×10^{-4}	0.58×10^{-4}

Emittance vs. BC1 misalignment

Emittance Dilution by Misalignments \&
Compensation with Beam Correction

Correction

Correctors and BPMs: 98 sets
$-\sigma=80-\mu \mathrm{m}$ misalignment
$\sigma=50-\mu \mathrm{m}$ relative misalignment (quads \& BPM)

- BPM resolution $=5 \mu \mathrm{~m}$
- One-to-one correction \& local BBA

Summary

- Machine tolerances were determined

- Linear interpolation method \& confirmed with random dynamic error simulation
- Machine tolerances are reasonable with $\Delta I / I_{0}<10 \%, \Delta E / E_{0}<0.02 \%, \Delta t<20 f s, \Delta \varepsilon_{\mathrm{nx}} / \varepsilon_{\mathrm{nxx} 0}<10 \%$ - Significant parameters for the beam stability: $\varphi_{1}, \varphi_{2}, V_{1}, V_{2}, \varphi_{\mathrm{x}}$

- Emittance dilution by misalignments

Alignment tolerance of BCs were calculated by 2% of emittance dilutions 500% emittance dilution is arisen by $80-\mu \mathrm{m}$ misalignments of all elements in the linac lattice Compensated by beam correction: $\mathbf{6 0} \% / \mathbf{3 0} \%$ by 1 -to- 1 correction, $\mathbf{5 0} \% / \mathbf{1 5} \%$ by local BBA

