

36th International Free Electron Laser Conference Basel, Switzerland, August 25-29, 2014

ERROR ANALYSIS FOR LINAC LATTICE OF HARD X-RAY FEL LINE IN PAL-XFEL*

H. Yang[#], J. H. Han, H. -S. Kang, and I. S. Ko

Pohang Accelerator Laboratory, Pohang 790-784, Korea

*Work supported by MSIP, Korea. #highlong@postech.ac.kr

Linac Parameter for HX FEL Beam energy (GeV) 10 0.2 Beam charge (nC) Slice emittance (mm-mrad) 0.4 Injector gun Photocathode RF-gun Peak current at undulator (kA) Repetition rate (Hz) 60 Linac structure S-band

Dynamic Error Simulation

Linear Interpolation Method (ref. LCLS CDR)

Error Study with Random Errors

	Peak Current (kA)	Beam Energy (GeV)	Arrival Time (fs)	Nor. Emit. –x (µm)	Nor. Emit. –y (µm)	Saturation Power (GW)	Saturatio Length (m)
Reference	2949.45 (charge/3.6*St)	10.04	2619845660	0.488	0.257	12.063	52.123
Target	10%	0.02%	20 fs	10%			
(with 200 samples)	$\Delta I/I_0$	$\Delta E/E_0$	Δt_{ℓ}	$\Delta c_{\rm ss}/c_{\rm ss0}$	$\Delta e_{\rm ss}/e_{\rm syn}$	$\Delta P/P_0$	$\Delta L/L_0$
Jitter - #1 (STD)	8.74%	0.009%	14.01 fs	6.49%	0.007%	8.60%	1.36%
Jitter - #2 (STD)	10.14%	0.015%	19.07 fs	8.07%	0.008%	9.97%	1.52%

Beam Jitter

Simulation with Misalignment

Alignment Tolerance of BC

ł	HOM of Bending Magnets							
	ном	BC1	BC2	BC3				
	b ₁ /b ₀	-	-1.60 x 10 ⁻¹⁶	-1.60 x 10 ⁻¹⁶				
	b ₂ /b ₀	-0.93 x 10 ⁻⁴	-0.80 x 10 ⁻⁴	-0.80 x 10 ⁻⁴				
	b ₃ /b ₀	-	-	-				
	b ₄ /b ₀	3.68 x 10 ⁻⁴	-0.57 x 10 ⁻⁴	-0.57 x 10 ⁻⁴				
	b ₅ /b ₀	-	-	-				
	b ₆ /b ₀	2.57 x 10 ⁻⁴	0.58 x 10 ⁻⁴	0.58 x 10 ⁻⁴				

Emittance vs. BC1 misalignment

Element	parameters	Value	Unit
	Δφ (tilt)	0~0.1	degree
Bends	Δχ	0~10	mm
ipole agnets)	Δy	0~10	mm
	Δz	0~10	mm

	Unit	M1	M2	М3	M4	2% emit. growth
Δφ	deg.	0.005	0.005	0.005	0.010	_
Δx	mm	9.0	2.5	6.0	3.0	
Δy	mm	0.20	0.30	0.35	0.50	
Δz	mm	0.1	4.0	3.0	0.2	Compensate with field correction by trim coil
	Unit	М1	M2	М3	M4	_
$\Delta \varphi$	deg.	0.010	0.015	0.020	0.020	
Δx	mm	10	7.5	6.0	10	
Δy	mm	2.5	4.0	4.5	6.0	
Δz	mm	7.5	1.5	2.0	6.0	_
	Unit	M1	M2	М3	M4	_
Δm	dea	0.030	0.040	0.045	0.060	_

Emittance Dilution by Misalignments & Compensation with Beam Correction

Simulation Setting

rror distribution, gaussian rror amplitude = σ utoff = 3σ		Error factor: 0.05~ 2.5		
lement	rms errors (Gaussian, 3-σ cutoff)	Value	Unit	
uads	misalignment	100 (dX, dY) 1 (dZ)	μm mm	
	tilt	0.5	mrad.	
ends	tilt	0.5	mrad.	
F struc.	misalignment	100 (dX, dY)	μm	

- Correction Correctors and BPMs: 98 sets
 - σ = 80-μm misalignment
- σ = 50-μm relative misalignment (quads & BPM) BPM resolution = 5 μm
- One-to-one correction & local BBA

Emittance Dilution & Compensation

Summary

- · Machine tolerances were determined
 - Linear interpolation method & confirmed with random dynamic error simulation
 - Machine tolerances are reasonable with $\Delta I / I_0 < 10\%$, $\Delta E / E_0 < 0.02\%$, $\Delta t < 20$ fs, $\Delta \varepsilon_{\rm nv} / \varepsilon_{\rm nv0} < 10\%$
 - Significant parameters for the beam stability: φ_1 , φ_2 , V_1 , V_2 , φ_x

· Emittance dilution by misalignments

- Alignment tolerance of BCs were calculated by 2% of emittance dilutions
- 500% emittance dilution is arisen by 80-µm misalignments of all elements in the linac lattice
- Compensated by beam correction: 60% / 30% by 1-to-1 correction, 50% / 15% by local BBA