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Abstract

FEL configurations in which the driving electron beam is

not axially symmetric (round) are important in the study of

novel concepts (such as TGU-based FELs, [1]- [2]) but also

become relevant when one wishes to explore the degree to

which the deviation from symmetry - inevitable in practical

cases - affects the performance of more conventional FEL

schemes [3]. In this paper, we present a technique for solv-

ing the initial value problem of such an asymmetric FEL.

Extending an earlier treatment of ours [4], we start from a

self-consistent, fully 3D, evolution equation for the complex

amplitude of the electric field of the FEL radiation, which is

then solved by expanding the radiation amplitude in terms

of a set of orthogonal transverse modes. The numerical re-

sults from such an analysis are in good agreement with sim-

ulation and provide a full description of the radiation in the

linear regime. Moreover, when the electron beam sizes are

constant, this approach can be used to verify the predictions

of the standard eigenmode formalism.

INTRODUCTION

In most theoretical treatments of the free electron laser

(FEL), it is assumed that certain characteristics of the elec-

tron beam (such as size and angular divergence) and the un-

dulator system (such as focusing strength) are the same in

both transverse directions, a premise which defines the so-

called round beam case. There exist, however, novel FEL

concepts whose treatment requires a definite departure from

the round beam scenario. A particularly intriguing example

of the latter is an FEL based on a transverse gradient undu-

lator (TGU), where the addition of dispersion may cause

the horizontal size of the electron beam to become much

larger than its vertical size. Moreover, non-symmetric FEL

examples may become relevant even in the context of more

conventional configurations since asymmetry is an inher-

ent feature in many key FEL components (we note, for in-

stance, the absence of horizontal focusing in a flat-pole un-

dulator). In this work, we adopt a model that covers both

cases and present a semi-analytical method for solving the

initial value problem of the FEL in the linear regime.

THEORY

We begin our analysis by presenting a slightly general-

ized version of an already established analytical result re-

garding a TGU-based FEL. In particular, using the methods

outlined in [4]- [5], one can derive a 3D equation which

governs the evolution of the radiation amplitude Eν (x, z)
throughout the linear regime of the interaction. The result -

in its most general form - can be stated as
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Here, F is meant as an operator, ∇2
⊥ = ∂

2/∂x2, ξ = ζ − z,
zx = z − z0, x+ = x + pxξ and y+ = y cos(knξ) +
(py/kn ) sin(knξ), where z0 is a constant offset and kn is

the undulator natural focusing strength in the y-direction,

kr = ωr /c = 2π/λr and ku = 2π/λu - where λr is the

resonant wavelength, ωr is the resonant frequency and λu
is the undulator period - while Δν = ν − 1 = ω/ωr − 1

is the detuning (ω is a frequency variable). On the other

hand, σy and σ′y are the rms values for the vertical size

and angular divergence of the electron beam while σT
and σ′x are their horizontal counterparts at zx = 0. The

former of the last two parameters includes the contribu-

tion of the - constant - dispersion η and is given by σT =

(σ2
x + η

2σ2
δ
)1/2, where σx is the non-dispersive horizon-

tal beam size (at z = z0) and σδ is the rms relative en-

ergy spread. It should be emphasized that - unlike the hor-

izontal beam size, which attains a minimum at z = z0 -

the vertical beam size is assumed to be constant, so the

matching condition σ′y/σy = kn holds in the y-direction.

Moreover, ρT andσ
e f

δ
are, respectively, the effective Pierce

parameter and energy spread of the FEL, quantities that

are expressed by ρT = ρ(1 + η2σ2
δ
/σ2

x )−1/6 and σ
e f

δ
=

σδ (1 + η2σ2
δ
/σ2

x )−1/2, where ρ is the Pierce parameter for

η = 0. The non-dispersive FEL parameter is in turn given

by ρ = (K2
0
[J J]2Ip/(16IAγ3

0
σxσy k2

u ))1/3, where γ0 is the

average electron energy in units of its rest mass m0c2, K0

is the on-axis undulator parameter, [J J] = J0(K2
0
/(4 +

2K2
0
))−J1(K2

0
/(4+2K2

0
)), IA ≈ 17 kA is the Alfven current

and Ip is the peak current of the electron beam. As far as the

remaining parameters are concerned,Cp = σ
2
x/σ

2
T + ᾱη−1

with ᾱ = K2
0
α/(2+ K2

0
), α being the transverse gradient of

the undulator field. Finally, we should also note that the ex-

pression for Cp given above is a generalization of the one

contained in [5], which only covered the case with ᾱ = 1/η.
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The latter is referred to as the TGU resonance condition. In

the limit of α → 0 and η → 0, ρT → ρ, σ
e f

δ
→ σδ

and the exponent in the third line of Eq. (1) vanishes (note

that Cp/η → 0) so the evolution equation now describes a

standard FEL with vertical - but not horizontal - natural fo-

cusing.

Mode Expansion

Our goal is to obtain a solution to Eq. (1) that is compat-

ible with a given input amplitude Eν (x,0). To this end, we

introduce a set of orthogonal transverse modes [6] given by

ψmn (x, z) = χm (x, z)ϕn (y, z), where

χm (x, z) = (2mm!)−1/2Hm
��
√

2Δx
wx

�� e−imux χ0(x, z) ,

ϕn (y, z) = (2nn!)−1/2Hn
��
√

2y

wy

�� e−inuy ϕ0(y, z) (2)

and

χ0 (x, z) = (kr βxr /π)1/4(βx + iz)−1/2e−krα
2
xi
/(2βxr )

× exp

(
− kr (x − αx )

2

2(βx + iz)

)
,

ϕ0(y, z) = (kr βyr/π)1/4(βy + iz)−1/2

× exp

(
− kr y2

2(βy + iz)

)
. (3)

In the above definitions, m,n = 0,1,2,3, ..., Hk are the

Hermite polynomials while βx , βy and αx are complex-

valued functions of z. The real parts of these quantities

are denoted by βxr , βyr and αxr - respectively - while their

imaginary parts are βxi , βyi and αxi . This convention -

an index r/i denoting real/imaginary part - is adopted for

other variables in this paper as well. Moreover, wx =

(2/(kr βxr ))1/2 | βx + iz |, wy = (2/(kr βyr ))1/2 ���βy + iz���,
ux = arctan((z + βxi )/βxr ), uy = arctan((z + βyi )/βyr )
and Δx = x − xc , where xc = αxr + αxi (z +
βxi )/βxr . These modes satisfy the orthonormality con-

dition
∫
d2

xψ∗
m′n′ (x, z)ψmn (x, z) = δmm′δnn′ and form a

complete set. Thus, the radiation amplitude Eν (x, z) can be

expanded in terms of the generalized Gauss-Hermite modes

described above. Our strategy is to construct an approxi-

mate solution to the initial value problem by retaining only

the fundamental (m = n = 0 or 00) mode in such an ex-

pansion. In other words, we would like to have Eν (x, z) ≈
E00
ν (x, z) = a00C00(z)ψ00(x, z), where a00 is a constant and

C00 (z) is a dimensionless mode coefficient to be determined

along with the basis parameters βx (z), αx (z) and βy (z).
Since E00

ν (x, z) is not an exact solution, FE00
ν (x, z) is a non-

zero function. Our solution is based on imposing the condi-

tion that the projections of FEν with respect to the 00, 10,

20 and 02 modes are zero i.e. (ψ00,FE00
ν ) = (ψ10,FE00

ν ) =
(ψ20,FE00

ν ) = (ψ02,FE00
ν ) = 0, where we define the inner

product ( f ,g) =
∫
d2

x f ∗g. The projections with respect to

the 01 and 11 modes are identically zero. Using Eqs. (1)-(3)

along with the aforementioned conditions, we can obtain a

set of four integro-differential equations forC00, βx , αx and

βy . In order to cast these analytical results in a more use-

ful form, we first introduce the scaled variables ẑ = z/βex ,

β̂x = βx/βex , α̂x = αx/σx and β̂y = βy/βey , where

βex = σx/σ
′
x is the minimum horizontal electron beta and

βey = σy/σ
′
y = 1/kn the vertical beta function. The re-

sulting equations are

dC00

d ẑ
= i
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+
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+ Bx

α̂xi

β̂xr

×
(
dα̂xr
d ẑ
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d ẑ
=

∫ ẑ

0
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In the above equations (and elsewhere), an extra subscript

ζ assigned to a variable denotes a dependence upon the in-

tegration variable ζ̂ , i.e. β̂x,ζ = β̂x (ζ̂ ), α̂x,ζ = α̂x (ζ̂ ) and

β̂y,ζ = β̂y (ζ̂ ) etc. The functions L1-L4 are given by

L1 = −8iA3ξ̂ exp(−2iAν̂ξ̂ − 2A2(σ̂e f

δ
)2 ξ̂2)

× ( β̂xr,ζ/ β̂xr )1/4( β̂yr,ζ/ β̂yr )1/4( ˆ̄βx/
ˆ̄βx,ζ )1/2

× ( ˆ̄βy/
ˆ̄βy,ζ )1/2G−1/2

pp T̂
−1/2

2
exp

(
T̂0

)
C−1/2
pp Ŷ−1/2

2
,

L2 = ( β̂xr /Bx )1/2eiux (T̂1/T̂2)L1 ,

L3 = 2 β̂xr e2iux [T̂−1
2 (1 + T̂2

1 /(2T̂2)) − 1]L1 ,

L4 = 2 β̂yr e2iuy (Ŷ−1
2 − 1)L1 , (8)

where A = ρT ku βex , ξ̂ = ζ̂ − ẑ, ν̂ = Δν/(2ρT ), σ̂e f

δ
=

σ
e f

δ
/ρT , ˆ̄βx = β̂x + i ẑ, ˆ̄βy = β̂y + i(βex/βey ) ẑ and

Bx = krσxσ
′
x . Furthermore, T̂1 = Gθ + GθpGp/Gpp ,

T̂2 = (1/2)(Gθθ − G2
θp
/Gpp ), Ŷ2 = (1/2)(Ct t − C2

t p/Cpp )
and

T̂0 =

G2
p

2Gpp

+

T̂2
1

4T̂2

− x̂2
c

2R2
− 2ip̄0 ξ̂ x̂c (9)

− Bx
2

⎧⎪⎨⎪⎩
α̂2
xi

β̂xr
+

α̂2
xi,ζ

β̂xr,ζ
+

( x̂c − α̂∗x )2
ˆ̄β∗x

+

( x̂c − α̂x,ζ )2
ˆ̄βx,ζ

⎫⎪⎬⎪⎭ ,
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Table 1: Undulator and Electron Beam Parameters

Parameter LCLS USR

Undulator parameter K0 3.7 3.68

Undulator period λu 3 cm 2 cm

Beam energy γ0m0c2 14.3 GeV 4.5 GeV

Resonant wavelength λr 0.15 nm 1 nm

Peak current Ip 3 kA 200 A

Energy spread σδ 10−4 1.5 × 10−3

Norm. emittance γ0σxσ
′
x 0.5 μm 0.0123 μm

Norm. emittance γ0σyσ
′
y 0.5 μm 1.23 μm

Horizontal size σx 23.1 μm 8.3 μm

Vertical size σy 30.2 μm 38.7 μm

FEL parameter ρ 5 × 10−4 6 × 10−4

where R = σT /σx , x̂c = xc/σx = α̂xr + α̂xi ( ẑ+ β̂xi )/ β̂xr
and p̄0 = ku βexσx (Cp/η). The remaining quantities to be

defined are

Gpp = 1 + ẑ2x/R
2
+ iBx ξ̂ + Bx ξ̂2/ ˆ̄βx,ζ ,

Gθθ =
ˆ̄βx/ β̂xr + w̃

2
x [1/ ˆ̄βx,ζ + (R

2Bx )−1] ,

Gθp = w̃x [ẑx/(R2B1/2
x ) − B1/2

x ξ̂/
ˆ̄βx,ζ ] ,

Gp = x̂c ẑx/R2 − Bx ( x̂c − α̂x,ζ )ξ̂/ ˆ̄βx,ζ

− 2iξ̂ (Q̄1 ξ̂/2 + Q̄2 ẑx ) , (10)

Gθ = −w̃x [B1/2
x ( x̂c − α̂∗x )/ ˆ̄β∗x + x̂c/(R

2B1/2
x )

+ B1/2
x ( x̂c − α̂x,ζ )/ ˆ̄βx,ζ + 2ip̄0 ξ̂/B1/2

x ]

where ẑx = zx/βex , w̃x =
��� ˆ̄βx

��� / β̂1/2
xr , Q̄1 = ku β2

exσ
′
x ᾱ,

Q̄2 = ku β2
exσ

′
x (ησ2

δ
/σ2

T
) and

Cpp = 1 + iBy ξ̄ + Bysin2 ξ̄/ ˆ̄βy,ζ , (11)

Ct t = ˆ̄βy/ β̂yr + w̃
2
y [B−1

y + iξ̄ + cos2 ξ̄/ ˆ̄βy,ζ ] ,

Ct p = −B1/2
y (w̃y/

ˆ̄βy,ζ ) cos ξ̄ sin ξ̄ ,

with By = krσyσ
′
y , ξ̄ = (βex/βey )ξ̂ and w̃y =

��� ˆ̄βy
��� / β̂1/2

yr .

Two important special cases are worth mentioning. The first

one refers to the limit α,η → 0, which describes a conven-

tional FEL with a flat-pole undulator and an undispersed

beam. In this case, we have p̄0 = 0, Q̄1 = Q̄2 = 0, R = 1

and - provided that α̂x (0) = 0 - the radiation profile remains

on-axis, i.e. α̂x = 0 so x̂c = 0, Gp = Gθ = 0, T̂0 = T̂1 = 0

and L2 = 0 (Eq. (5) then becomes trivial). The second case

is a TGU-based FEL in which the horizontal emittance ef-

fect can be neglected. This scenario can be accommodated

by the general equations given above if we set Gpp = 1 and

Gθp = Gp = 0.

NUMERICAL RESULTS

In the previous section, we presented a semi-analytical,

approximate method for solving the initial value problem

of an asymmetric FEL in the linear regime. Here, we test

this method by comparing numerical results derived from it

with simulation data and the predictions of standard eigen-

mode analysis. In particular, we first consider the case of an

FEL based on a conventional, LCLS-type undulator with a

flat pole-face (ᾱ = 0) and no external focusing (Table 1).

The driving electron beam is also characterized by LCLS-

like parameters, namely a 14.3 GeV energy, a 3 kA peak cur-

rent and a 0.5 μm normalized emittance in both x and y (of

course, η = 0). The vertical natural focusing beta function

βey ≈
√

2γ0/(K0ku ) is approximately 51 m while - in the

absence of horizontal focusing - we assume that the horizon-

tal beta function attains a minimum value of βex = 30 m

at z = z0 = 36 m. For this configuration, we performed

a steady-state GENESIS simulation [7] assuming a seed

wavelength of 0.1500372 nm and an input Gaussian seed

with a 9 m Rayleigh length and a waist located 6 m inside

the undulator. At the same time, we derived the linearized

solution by numerically solving Eqs. (4)-(7). Based on the

seed parameters mentioned above, our initial values were

β̂x (0) = 0.3− 0.2i, α̂x (0) = 0 and β̂y (0) = 0.176− 0.117i.
The comparison between the results obtained through the

two approaches is shown in Figs. 1-2, where the FEL gain

G = log(P/P0) - P is the radiation power and P0 its value

at z = 0 - and the radiation beam size σr are plotted as

functions of z. Since P ∝
∫
d2

x|Eν (x, z)|2, we find that

P = P0 |C00(z) |2 if we select C00(0) = 1. The analyt-

ical expression for σr - defined in the context of GENE-

SIS as the square root of the average value of x2
+ y

2 - is

σr = (σ2
r x +σ

2
ry )1/2, where σr x = wx/2 and σry = wy/2.

Very good agreement is observed in the first 50 m of undu-

lator, which is the approximate extent of the linear regime.

On the other hand, whenever the z-dependent effects in-

troduced by the horizontal emittance can be disregarded, the

solution of the initial value problem can be expressed in

terms of the guided, FEL eigenmodes. This corresponds to
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0

5

10

15

20

25

z(m)

G
=

lo
g
(P

/P
0
)

Simulation
Theory

Figure 1: FEL gain as a function of z for the LCLS param-

eters (data from the linearized solution versus simulation

results).
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the previously mentioned model of a TGU-based FEL with

σ′x = 0 but σ′y � 0. In this case, a single, Gaussian-like

FEL mode typically dominates all the others in the high-

gain part of the linear regime, i.e. Eν (x, z) ∝ A00(x)eiμ00z ,

where μ00 is the growth rate and A00(x) the transverse pro-

file of the dominant, fundamental mode. As has been shown

elsewhere [5], this fundamental growth rate can be accu-

rately calculated through a variational technique. In view of

this property, we should also expect the linearized solution

to asymptotically converge into a guided mode. To facili-

tate a direct comparison with the results of the eigenmode

formalism, we express the mode coefficient as C00(z) =
exp

(
i
∫ z

0
μ(t)dt

)
, where μ(z) = −iC−1

00
(dC00/dz) is a z-

dependent complex growth rate and compare the variational

value of μ00 with the asymptotic value μ(∞). For a spe-

cific example, we use the TGU parameters listed in Table 1,

which refer to a concept based on the PEPX ultimate stor-

age ring (USR). In this case, βey ≈ 11 m and βex =

σx/σ
′
x = 50 m, though the latter quantity - like the hori-

zontal emittance σxσ
′
x - is now merely a convenient scal-

ing factor. We solve Eqs. (4)-(7) for η = 3.5 cm, ᾱ = 1/η,

ν̂ = −0.15, β̂x (0) = 0.238+0.086i, α̂x (0) = 0.167+0.992i
and β̂y (0) = 0.896 + 0.543i. These initial values are se-

lected so that the transverse profile of the input radiation

field roughly matches that of the fundamental FEL mode.

As is evident from Fig. 3, the z-dependent growth rate in-

deed attains a constant value in the high-gain portion of the

linear regime. The same conclusion can be established for

βx + iz, βy + iz and αx , so that ψ00 evolves into a guided

mode with a z-invariant transverse profile. Lastly, we point

out that our solution yields μ̂(∞) = μ(∞)/(2ρT ku ) =
0.398− 0.312i, which is very close to the variational result

μ̂00 = μ00/(2ρT ku ) = 0.394 − 0.308i.
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6 x 10−5
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σ
r
(m
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Figure 2: Radiation beam size as a function of z for the

LCLS parameters (data from the linearized solution versus

simulation results).
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ẑ

Re(μ̂)

-Im(μ̂)

Figure 3: Real and imaginary part of the scaled growth rate

μ̂ = μ/(2ρT ku ) as a function of ẑ = z/βex (USR param-

eters). The dashed lines correspond to the variational solu-

tion.

CONCLUSION

We have developed a technique for approximately solving

the initial value problem of an asymmetric FEL in the linear

regime of the interaction. Starting from a self-consistent,

3D evolution equation for the radiation amplitude, we con-

structed an approximation scheme in which the latter quan-

tity can be adequately described by the fundamental (00)

element in a basis of generalized Gauss-Hermite modes. In

this way, the problem is ultimately reduced to a set of four

integro-differential equations for a single mode coefficient

and three basis parameters. Numerically solving this set

yields results which provide a complete characterization of

the radiation and are in good agreement both with simula-

tion data and with the predictions of the eigenmode theory.
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