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Abstract
The use of a transverse gradient undulator (TGU) is con-

sidered an attractive option for FELs driven by electron

beams with a relatively large energy spread. In this scheme,

a dispersion is introduced in the beam while the undula-

tor poles are inclined so that the undulator field acquires

a linear dependence upon the transverse position in the di-

rection of dispersion. By suitably selecting the dispersion

and the field gradient, the energy spread effect can be sig-

nificantly mitigated, thus avoiding a drastic reduction in the

FEL gain. However, adding the dispersion typically leads

to electron beams with large aspect ratios. As a result, the

presence of higher-ordermodes in the output FEL radiation

can become significant. To investigate this effect, we study

the properties of the higher-order eigenmodes of a TGU-

based, high-gain FEL, using both a simplified, analytically-

solvable model and a variational technique. This formalism

is then used to provide an estimate of the degree of trans-

verse coherence for a representative soft X-ray, TGU FEL

example.

INTRODUCTION
One of the most crucial parameters which affect the per-

formance of a free electron laser (FEL) is the energy spread

in the driving electron beam. A large value of the latter

gives rise to a wide spread in the resonant wavelength, re-

sulting in a substantially decreased FEL gain. Using a trans-

verse gradient undulator (TGU) [1]- [2], it is possible to

mitigate this problem. By dispersing the electron beam and

tilting the undulator poles, both the electron energy and the

undulator parameter acquire a linear transverse dependence.

A suitable selection of the dispersion and the field gradi-

ent minimizes the impact of the energy spread upon the

FEL resonance condition, leading to improved performance.

This scheme has been shown to be attractive for FEL con-

cepts that utilize the beam from laser-plasma accelerators

(LPAs) [3]. However, a drawback of the TGU approach

is the increased size of the electron beam in the direction

of dispersion (typically the horizontal direction), which can

cause the growth of multiple FELmodes in the exponential-

gain regime, degrading the transverse coherence of the out-

put radiation. In order to provide a theoretical framework

for understanding this effect, we study the properties of the

higher-order FEL modes for a TGU-based configuration.

Our analysis is based on solving the FEL eigenmode equa-

tion for the parallel beam case (negligible emittance and fo-

cusing effects) by employing an exactly-solvable, approxi-

mate model and a variational approach. When applied to a

specific LPA-based example, this formalism yields results

which agree with simulation and provide us with insight

into the factors which affect transverse coherence in a TGU

FEL.

THEORY
As mentioned earlier, our study is based on an analysis of

the FEL eigenmodes, i.e. the solutions of the form A(x)eiμz
for the complex amplitude of the electric field of the radia-

tion - where x = (x, y) is the transverse position vector and
z is the longitudinal coordinate along the undulator. Each
eigenmode is thus characterized by a z-invariant transverse
profile A(x) and a constant, complex growth rate μ. Accord-
ing to our previous treatment of a TGU-based FEL [4], the

equation that is satisfied by the profile and the growth rate

of a growing mode (i.e. one with Im(μ) < 0) in the parallel
beam regime is

(
μ − ∇2⊥

2kr

)
A(x) = U (x, μ)A(x) , (1)

where

U (x, μ) = −8ρ3T k3u exp ��− x2

2σ2T
− y2

2σ2y

��
×

∫ 0

−∞
dξξei(μ−Δνku )ξe−2(σ

e f
δ )

2
k2uξ

2

× exp

(
−2ikuCp

x
η
ξ

)
. (2)

Here, ∇2⊥ = ∂2/∂x2, kr = 2π/λr and ku = 2π/λu -
where λr is the resonant wavelength and λu is the undu-

lator period -Δν is a dimensionless detuning variable while
σT and σy are the rms electron beam sizes in the x and
y directions. The former of the last two parameters in-

cludes the contribution of the - constant - dispersion η and
is given by σT = (σ2x + η2σ2δ )

1/2, where σx is the non-

dispersive horizontal beam size and σδ is the rms energy

spread. Moreover, ρT and σ
e f
δ are, respectively, the effec-

tive Pierce parameter and energy spread of the FEL, quanti-

ties that are expressed by ρT = ρ(1 + η2σ2δ/σ
2
x )−1/6 and

σ
e f
δ = σδ (1 + η2σ2δ/σ

2
x )−1/2, where ρ is the Pierce pa-

rameter for η = 0. This non-dispersive FEL parameter is

in turn given by ρ = (K2
0
[JJ]2Ip/(16IAγ30σxσy k2u ))1/3,

where γ0 is the average electron energy in units of its rest
mass m0c2, K0 is the on-axis undulator parameter, [JJ] =
J0 (K2

0
/(4 + 2K2

0
)) − J1(K2

0
/(4 + 2K2

0
)), IA ≈ 17 kA is the

Alfven current and Ip is the peak current of the electron

beam. On the other hand, Cp = σ
2
x/σ

2
T + ᾱη − 1 with

ᾱ = K2
0
α/(2 + K2

0
), α being the transverse gradient of the
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undulator field. The expression forCp given above is a gen-

eralization of the one contained in [4], which only covered

the case with ᾱ = 1/η. The latter describes the TGU reso-

nance condition. To proceed, we introduce the scaled quan-

tities x̂ = x/σT , ŷ = y/σy , μ̂ = μ/(2ρT ku ), ξ̂ = 2ρT ku ξ,
ν̂ = Δν/(2ρT ) and σ̂e f

δ = σ
e f
δ /ρT , in which case the eigen-

mode equation is cast into a fully dimensionless form:(
μ̂ − pdx ∂

2

∂ x̂2
− pdy ∂

2

∂ ŷ2

)
A(x̂) = Û (x̂, μ̂)A(x̂) , (3)

where x̂ = ( x̂, ŷ), pdx = (4ρT ku krσ2T )
−1 and pdy =

(4ρT ku krσ2y )−1 are the diffraction parameters,

Û (x̂, μ̂) = − exp
(
− x̂

2

2
− ŷ2

2

)

×
∫ 0

−∞
d ξ̂ ξ̂ei(μ̂−ν̂)ξ̂e−(σ̂

e f
δ )

2
ξ̂2/2e−2i p̂0 ξ̂ x̂ (4)

and p̂0 = σT (Cp/η)/(2ρT ).

For pdx ,pdy � 1, the radiation size in both the x and
y directions is smaller than the corresponding size of the

electron beam. In this case, we can expand the Gaussian

term in the RHS of Eq. (4) according to exp(−x̂2/2 −
ŷ2/2) ≈ 1 − x̂2/2 − ŷ2/2. Moreover, when | p̂0 | � 1,

the ξ̂-integral in the definition of Û can be approximated

by Î0 − 2ip̂0 Î1 x̂ − 2p̂2
0
Î2 x̂2, where În =

∫ 0

−∞ d ξ̂ ξ̂
n+1eΨ and

Ψ = i( μ̂ − ν̂) ξ̂ − (σ̂e f
δ )

2 ξ̂2/2. Thus, by expanding Û up to

second order in x̂ and ŷ, the mode equation is written in a

simplified form as(
μ̂ − pdx ∂

2

∂ x̂2
− pdy ∂

2

∂ ŷ2

)
A(x̂) =

(F0 + F1 x̂ + F2 x̂2 + G2 ŷ
2)A(x̂) , (5)

where F0 = −Î0, F1 = 2ip̂0 Î1, F2 = Î0/2 + 2p̂20 Î2 and G2 =

Î0/2. It can be shown that the above equation admits exact
analytical solutions [5], which are given by

Amn (x̂) =Hm (
√
2âx ( x̂ − b̂/(2âx )))e−âx x̂

2+b̂ x̂

× Hn (
√
2ây ŷ)e−ây ŷ

2

, (6)

where Hk are the Hermite polynomials andm,n = 0,1,2, ....
The growth rate μ̂ and the mode parameters âx , ây , b̂ satisfy
the relations

μ̂ + pdx[(4m + 2)âx − b̂2 ] + (4n + 2)pdy ây = −Î0 (7)

â2x = −
Î0 + 4p̂20 Î2
8pdx

, âx b̂ =
ip̂0
2pdx

Î1 , â2y = −
Î0

8pdy
. (8)

In general, the modes described by Eqs. (6)-(8) are char-

acterized by an asymmetric intensity profile (given by

|A(x̂) |2), which is not invariant under the reflection x → −x,
though it is still invariant under y → −y. The main advan-
tage of thismodel is that it provides a simpleway to estimate

the mode properties even for high mode order.

Approximations for the growth rate and the profile of an

FEL mode can also be obtained through a well-established

variational technique [6]. In this case, we begin by con-

structing a so-called variational functional, expressed by

∫
d2x̂A(x̂)

(
μ̂ − pdx ∂

2

∂ x̂2
− pdy ∂

2

∂ ŷ2

)
A(x̂)

=

∫
d2x̂A2(x̂)Û (x̂, μ̂) . (9)

Given a trial function for the mode profile A(x̂), this func-
tional yields an accurate estimate for the growth rate μ̂.
Here, we seek to derive variational solutions for the first

few eigenmodes. In order to make a judicious choice of the

trial function for a specific mode, we each time try a form

which has the same functional dependence on x̂ and ŷ as

the exact solution given by Eq. (6). For example, we select

a trial function of the form A(x̂) = e−âx x̂
2+b̂ x̂e−ây ŷ

2
for the

fundamental (00, i.e. m = 0, n = 0) mode while our choice
for the 01 mode is A(x̂) = ŷe−âx x̂

2+b̂ x̂e−ây ŷ
2
. Substituting

these into Eq. (9), we obtain the result

F (âx , ây , b̂, μ̂) = μ̂ + pdx âx + χpdy ây + (âx + 1/4)−1/2

× â1/2x âχ/2y (ây + 1/4)−χ/2
∫ 0

−∞
d ξ̂ ξ̂ei(μ̂−ν̂)ξ̂e−(σ̂

e f
δ )

2
ξ̂2/2

× exp �� (b̂ − ip̂0 ξ̂ )
2

2âx + 1/2
− b̂2

2âx
�� = 0 , (10)

where χ = 2n + 1, n being the second index of the

00/01 mode. Using the stationary condition ∂ μ̂/∂ âx =
∂ μ̂/∂ ây = ∂ μ̂/∂ b̂ = 0, we also obtain the additional re-

lations ∂F (âx, ây , b̂, μ̂)/∂ âx = 0, ∂F (âx , ây , b̂, μ̂)/∂ ây = 0
and ∂F (âx, ây , b̂, μ̂)/∂ b̂ = 0. These three derivative rela-

tions have to be solved simultaneously along with Eq. (10)

in order to determine the properties of the 00/01 mode. As

far as the 10 mode is concerned, we now use a trial func-

tion of the form A(x̂) = ( x̂ + λ̂)e−âx x̂
2+b̂ x̂e−ây ŷ

2
while, for

the 11 mode, we choose A(x̂) = ( x̂ + λ̂) ŷe−âx x̂
2+b̂ x̂e−ây ŷ

2
.

These manipulations yield the relation

F (âx , ây , b̂, λ̂, μ̂) = ( μ̂ + χpdy ây )
[
(λ̂ +

b̂
2âx

)2 +
1

4âx

]
+ pdx âx

[
(λ̂ +

b̂
2âx

)2 +
3

4âx

]
+ â1/2x (âx + 1/4)−1/2

× âχ/2y (ây + 1/4)−χ/2
∫ 0

−∞
d ξ̂ ξ̂ei(μ̂−ν̂)ξ̂e−(σ̂

e f
δ )

2
ξ̂2/2

×
[
(λ̂ +

b̂ − ip̂0 ξ̂
2âx + 1/2

)2 +
1

4âx + 1

]
× exp �� (b̂ − ip̂0 ξ̂)

2

2âx + 1/2
− b̂2

2âx
�� = 0 , (11)

where χ is defined as before. In this last two cases, the

variational solution is completed by the relations ∂F/∂ âx =
∂F/∂ ây = ∂F/∂ b̂ = ∂F/∂ λ̂ = 0.

Exactly Solvable Model

Variational Calculation
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Table 1: Undulator and Electron Beam Parameters

Parameter LPA
Undulator parameter K0 2

Undulator period λu 1 cm

Beam energy γ0m0c2 1 GeV

Resonant wavelength λr 3.9 nm

Peak current Ip 10 kA

Energy spread σδ 10−2
Normalized emittance γ0ε x 0.1 μm
Normalized emittance γ0εy 0.1 μm
Horizontal size σx 11.3 μm
Vertical size σy 11.3 μm
FEL parameter ρ 6 × 10−3

NUMERICAL RESULTS
The formalism presented in the previous section can pro-

vide an estimate of the mode content in the output radiation

from a TGU-based FEL. An interesting example of such a

concept refers to a machine which would utilize a 1 GeV/10

kA LPA beam with the aim of producing radiation within

the so-called water window wavelength region [3]. The full

set of parameters is listed in Table 1. This set was also

used in [4] in order to demonstrate the optimization of the

dispersion η using a variational calculation for the funda-
mental FEL mode. The main results are summarized in the

graph of the frequency-optimized gain length vs the disper-

sion (Fig. 1). In terms of our present scaling, the power

gain length Lg is given by Lg = −
√
3LT /(2Im( μ̂)), where

LT = λu/(4π
√
3ρT ). This optimization scenario involves

varying the dispersion while keeping the other parameters

fixed (except - of course - the TGU gradient, which satisfies

the condition ᾱ = 1/η) and maximizing the power growth
rate with respect to the detuning for each dispersion value.

0.005 0.01 0.015 0.02 0.025 0.03

0.2

0.22

0.24

0.26

0.28

η(m)

L
g
(m

)

Figure 1: Frequency-optimized gain length of the funda-

mental mode as a function of the dispersion for the LPA

parameters. The data shown were obtained using the varia-

tional solution.

The optimum gain length is about 20 cm, for a 7 mm disper-

sion.

From a practical point of view, it may be desirable to se-

lect a dispersion value appreciably larger than the optimum.

By thusmoving away from the steep part of the optimization

curve, the sensitivity of the gain length with respect to unex-

pected variations of η is reduced at a modest cost in terms of
FEL gain. However, operating at or to the right side of the

optimum typically creates an electron beam with a large ra-

tio of horizontal to vertical size. As has been shown in simu-

lation studies [3], such a configuration can allow the growth

ofmultiple FELmodes in the high gain regime, reducing the

transverse coherence of the output radiation. To study this

effect, we first select a dispersion η = 1 cm (quite close to

the optimum) and employ the variational solution in order

to ascertain what the ordering of the various FEL modes is

with respect to the power growth rate. For this dispersion

value, pdx = 0.008, pdy = 0.63, p̂0 = 0.02 and the e-beam
aspect ratio σT /σy is about 9. The main results are pre-

sented in Fig. 2, which shows the negative imaginary part

of the scaled growth rate as a function of the detuning for the

00, 10, 01 and 11 modes. For each mode, the power growth

rate attains a maximum for some negative detuning value.

The corresponding frequency-optimized gain lengths are,

respectively, L00g = 20.4 cm, L10g = 21.2 cm, L01g = 30.5

cm and L11g = 32.3 cm. The other important observation
is that modes with the same n-index (and, thus, similar ver-
tical profile) form groups with closely spaced growth rates.

As expected, most favored are the modes with n = 0, which
are characterized by Gaussian-like profiles and maximum

overlap with the electron beam.

To check whether this pattern holds when more higher-

order modes are included, we use the truncated, parabolic-

like model to obtain equivalent detuning curves for the

modes already considered plus some additional ones

1.5 1 0.5 0
0.3
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0.45

0.5

0.55

0.6

0.65

ν̂

-I
m
(μ̂
)

00
10
01
11

Figure 2: Negative imaginary part of the scaled growth rate

μ̂ as a function of the scaled detuning ν̂ for various FEL
modes (variational data for the η = 1 cm case).
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Figure 3: Negative imaginary part of the scaled growth rate

μ̂ as a function of the scaled detuning ν̂ for several FEL
modes (data from the analytical solution, for the η = 1 cm

case).

(namely the 20 and 30 modes, see Fig. 3). We note that the

data from the analytical solution are not identical to the vari-

ational results, as the detuning curves in the former case are

shifted towards the left (i.e. the region of negative ν̂). This
is due to the fact that, even though pdx and p̂0 are much
smaller than unity, pdy is not quite so, with the result that
the present parameters probably lie at the limit of the ex-

act model’s applicability. However, we can still verify that

the mode spectrum has the same structure as in the vari-

ational case. Moreover, even though the detuning curves

differ for the two approaches, both the variational and the

exact solution actually give very similar estimates for the

optimized gain lengths. For comparison, we now obtain

L00g = 20.4 cm, L10g = 21.2 cm, L20g = 22.1 cm, L30g = 23.1
cm, L01g = 30.2 cm and L11g = 31.8 cm.
As a quantitative measure of the degree of trans-

verse coherence, we use the quantities fmn =

exp(Lsat/Lmn
g )/ exp(Lsat/L00g ). These express the

ratio of the power amplification factor for the mn higher-
order mode versus that of the fundamental at the saturation

length Lsat . Since SASE -which is the operating mode as-
sumed here - excites a range of frequencies, all gain lengths

associated with this calculation are optimized with respect

to the detuning. As an estimate of the saturation length, we

use Lsat = NgL00g , where Ng ≈ 20. More precisely, we

can use the formula Ng ≈ log[Psat/(PSASE/9)], where
Psat ≈ 1.6ρTγ0m0c2Ip (LT/L00g )2 is the saturation power
and PSASE ≈ ρ2T γ0m0c3/λr is the SASE power [7]. For

the 1 cm dispersion, this calculation yields Lsat ≈ 4.4 m,
which agrees with the simulated saturation within a 5 m

undulator shown in [3]. Using the variational values for the

mode gain lengths, we obtain f10 ∼ 0.43, f01 ∼ 8 × 10−4
and f11 ∼ 3.6 × 10−4 while the values from the analytical

solution yield f10 ∼ 0.43, f20 ∼ 0.19, f30 ∼ 8.5 × 10−2,

f01 ∼ 9.7 × 10−4 and f11 ∼ 4.7 × 10−4. These results

would lead us to expect that at least 1-2 higher-ordermodes

(10 and 20) would be visible in the radiation profile at

saturation. Again, this is indeed what was observed in [3]

for η = 1 cm. We have repeated this analysis for two

additional dispersion values [5], namely η = 2 cm and

η = 4 mm. The aspects ratios in these cases are ∼ 18 and

∼ 3.6, respectively, while σy is the same as before (∼ 10

μm). In the first case, it was found that fmn ≤ f10 ∼ 0.68
while the smaller dispersion yields fmn ≤ f10 ∼ 0.05.
This provides additional support for our main conclusion,

which is that the transverse coherence for such TGU-based

schemes is enhanced when the electron beam aspect ratio

is decreased.

CONCLUSION
In this paper, we have developed a formalism that is suit-

able for investigating the higher-order mode properties of

a TGU-based, high-gain FEL when emittance and focus-

ing effects are negligible (parallel beam regime). We em-

ploy a variational approach along with an exactly solvable,

parabolic-like model in order to obtain approximate solu-

tions to the eigenmode equation, both for the fundamental

and for the higher-order FEL modes. These solutions are

then used in a study of the transverse coherence of the ra-

diation from an LPA-based, TGU FEL example. Verifying

earlier observations based on simulation, it is shown that

a stronger TGU gradient (i.e. a smaller dispersion and thus

less excessive horizontal beam size) enhances transverse co-

herence. This property is likely to be relevant in determin-

ing the operating parameters of a TGU FEL.
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