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Abstract
We continue our study [1–3] of CSR from a bunch on

an arbitrary curved orbit in a plane. The vacuum chamber

has rectangular cross section with possibly varying horizon-

tal width. We make a Fourier transform in s − ct and use

the slowly varying amplitude approximation. We invoke a

Fourier expansion in the vertical coordinate y, which meets

the boundary conditions on the top and bottom plates and

makes contact with the Bessel equation of the frequency

domain treatment. The fields are defined by a PDE in s
and x, first order in s, which is discretized in x by finite dif-

ferences (FD) or the discontinuous Galerkin method (DG).

We compare results of FD and DG, and also compare the

computation speeds to our earlier calculations in 3D (parax-

ial) which did not use the Fourier series in y [4–8]. This

approach provides more transparency in the physical descrip-

tion, and when only a few y-modes are needed, provides a

large reduction in computation time.

STATEMENT OF THE PROBLEM
Statement of the Physical Problem

We start with the wave equation for the Ey and Hy fields

in the Frenet-Serret coordinates (s, x, y, t) :

∇2Ey − 1

c2

∂2Ey

∂t2
= Z0

(1
c
∂Jy
∂t
+ c
∂ρ

∂y

)
, (1a)

∇2Hy − 1

c2

∂2Hy

∂t2
= − R

x + R
∂Jx
∂s
+
∂Js
∂x
+

1

x + R
Js .

(1b)

We shall solve for the fields in a toroidal vacuum chamber

with perfectly conducting walls at x = xin , xout and y =

±h/2. The bunch orbit is centered in the chamber and has

bending radius R. We next apply a Fourier transform in

s − ct and a Fourier series in y. Now the fields and sources

are expressed in the form

F (s, x, y, t) =
∫ ∞

−∞
dk eik (s−ct )

∞∑
p=1

φp (y)F̂p (s, x, k), (2)

φp (y) =
[

cos

sin

] (
αp (y + h/2)

)
, αp =

πp
h
.
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If the vertical distribution of charge is an even function of

y, which we assume, then only odd integers p are involved.

For Ey , Hx , Hs , Jy the factor φp contains only cos terms

whereas for Hy , Ex , Es , ρ, Jx , Js it contains only sin terms.

In the approximation of slowly varying amplitude (parax-

ial approximation) terms with ∂2/∂s2 are neglected and the

transformed equations (1) for F̂p (s, x, k) = Êyp , Ĥyp be-

come (with γ2
p = k2 − α2

p ):

2ikR2

(x + R)2

∂F̂p

∂s
= −∂

2F̂p

∂x2
− 1

x + R
∂F̂p

∂x

−
(
γ2
p −

(kR)2

(x + R)2

)
F̂p + S.

(3)

For a charge density of the form qλ(s−ct)H (y)δ(x), where

q is the charge, the source terms are:

SÊ = σδ(x), SĤ = τ
(
δ′(x) + δ(x)/R

)
(4a)

σ = qZ0αpcλ̂(k)Hp , τ = qβcλ̂(k)Hp , (4b)

where λ̂ and Hp are Fourier transforms of λ and H. For

a Gaussian H with width σy � h we have Hp =

(−1)(p−1)/2(2/h) exp(−(αpσy )2/2).
The perfectly conducting boundary conditions are guar-

anteed by:

Êyp |x=xin,xout = 0,
∂Ĥyp

∂x
|x=xin,xout = 0. (5)

To construct initial conditions for Êyp , Ĥyp , we assume an

infinite straight prior to the entrance of the bend and use the

steady-state solutions F̂p0 = Êyp0, Ĥyp0 which satisfy:

d2F̂0p

dx2
− α2

p F̂0p = S (6)

With the solutions Êyp , Ĥyp to the initial value problem

(3-6) for each p, we construct the remaining fields through

additional relations in Eq. (30), then return to the space-time

domain by (2).

Statement of the Mathematical Problem
To solve (3) numerically, we first introduce a transforma-

tion to treat the singularities of (4a):

V = Êyp − σxΘ(x), (7a)

W = Ĥyp − τΘ(x), (7b)
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with Θ being the Heaviside step function. Under these trans-

formations, V,W still satisfy (3); however, the sources be-

come:

SV = −σΘ(x)
(

1

x + R
+ x
(
γ2
p −

(kR)2

(x + R)2

))
, (8a)

SW = −τΘ(x)
(
γ2
p −

(kR)2

(x + R)2

)
. (8b)

We have eliminated δ and δ′ from the source, gaining a big

advantage for the numerical work. A jump in the sources

at x = 0 remains, but that too can be removed by a second

transformation, which will be described elsewhere.

The boundary conditions for V,W are:

V |x=xin = 0, V |x=xout = −σxout ,
∂W
∂x

|x=xin,xout = 0.
(9)

Next, we condense (3) to the following for fixed k,p:

i
∂u
∂s
= a(x)

∂2u
∂x2
+ b(x)

∂u
∂x
+ c(x)u + S̃V ,W (x) (10)

with u representing V,W , and S̃V ,W = (x + R)2SV ,W /2kR2.

It is important to note that our Schrödinger-type equation

(10) is only parabolic in the sense of infinite propagation

speed. It is hyperbolic-like in the sense that initial conditions

are not smoothed by the PDE evolution.

The solutions of (6) to provide initial conditions are found

readily by variation of parameters:

Êyp0(x) = − σ
αp

sinh(αp xout ) sinh(αp (x − xin ))
sinh(αp (xout − xin ))

+
σ

αp
sinh(αp x)Θ(x),

(11a)

Ĥyp0(x) = − τ sinh(αp xout ) cosh(αp (x − xin ))
sinh(αp (xout − xin ))

+ τ cosh(αp x)Θ(x).
(11b)

NUMERICAL IMPLEMENTATION
In this section we describe our numerical algorithms for

integrating (10) by finite difference (FD) and nodal discon-

tinuous Galerkin (DG) numerical schemes. We use explicit

time-stepping in s for both methods.

Finite Difference Scheme
We begin by discretization of [xin , xout ] into Nres + 1

equidistant nodes spaced by Δx. The nodal coordinates are

defined by xi = xin + (i − 1)Δx and ui = u(xi ). We define

the 4th order differentiation operators by:

du
dx

����xi ≈
ui−2 − 8ui−1 + 8ui+1 − ui+2

12Δx
,

d2u
dx2

����xi ≈
−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12Δx2
.

(12)

For points near the boundaries, i.e. i = 1,2,Nres ,Nres + 1,

we use lopsided 5 point stencils. For explicit time stepping,

we employ a leap-frog scheme. It is important to note: the

leap-frog scheme is unstable for the heat equation [9] but

stable for our Schrödinger-type equation in (10). The leap-

frog scheme is:

un+1 = un−1 + 2Δs Φ(un ) (13)

with Φ(un ) denoting the right-hand-side of (10) with the

discretizations (12) at s = nΔs. For stability, we take:

Δs = CCFLkΔx2. (14)

In our tests, CCFL < 0.3 results in a stable scheme for

p � 40. Due to the oscillatory nature of the solution for

large p, a smaller CFL constant must be taken if larger p-

modes are desired.

The boundary conditions on V are imposed by setting

V1 = 0 and VNres+1 = −σp xout while the boundary condi-

tions for W are imposed with a one-sided derivative stencil

and solving for W1 and WNres+1 as functions of W2, ...,5 and

WNres−3, ...,Nres respectively. The initial conditions on V,W
are computed analytically from (11).

Discontinuous Galerkin Scheme
We derive our DG scheme in some detail since it is not as

well known as FD. DG methods have features taken from fi-

nite element (FE) and finite volume methods (FV). Solutions

are represented by polynomials local to each element as in

FE; however, the PDE can be represented in an explicit semi-

discrete form. The PDE is satisfied using fluxes between

elements similar to FV. This results in a scheme which can

maintain high-order accuracy (hp-adaptivity) and stability

for wave-dominated problems [10].

We rewrite the PDE in (10) in first order form as

i
∂u
∂s
= a(x)

∂q
∂x
+ b(x)q + c(x)u + f , q =

∂u
∂x
. (15)

To find an approximate solution, we begin by partitioning

the domain [xin, xout] into K elements of polynomial degree

N . The total number of nodes is given by (N+1)K . We next

focus on a particular element k (note, this k is not related to

Fourier transform in (2)). We approximate the solution on

this element in the Lagrange polynomial basis:

uk (x, s) =
N+1∑
j=1

uk
j (s)kj (x), (16)

qk (x, s) =
N+1∑
j=1

qk
j (s)kj (x), (17)

with kj (xki ) = δi j for nodal coordinates xki . The derivatives

of u in (15) are given by differentiating (16). The terms f ,

cu and bq are replaced by their natural interpolating polyno-
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mials

(cu)k =
N+1∑
j=1

ckj uk
j (s)kj (x), (bq)k =

N+1∑
j=1

bkj qk
j (s)kj (x),

(18)

f k =
N+1∑
j=1

f kj (s)kj (x)

and a∂xq is replaced by

ak
N+1∑
j=1

qk
j (s)[kj (x)]′, (19)

where ak is the value of a at the midpoint of element k.

Note that each of these is a polynomial of degree N (or less).

Equation (19) assumes a does not vary much on element k,

which is certainly true in our case, however, we are investi-

gating alternatives which do not make such an assumption.

Inserting (16), (18), (19) into (15) we obtain the following

residuals Rk
1,2

(x, s) defined by

Rk
1 (x, s) = i

∂uk

∂s
− ak ∂q

k

∂x
− (bq)k − (cu)k − f k , (20a)

Rk
2 (x, s) = qk − ∂uk

∂x
. (20b)

We now require that the residuals Rk
1,2

(x, s) be approxi-

mately orthogonal to the ki . This yields N + 1 equations for

each (uk
j ,q

k
j ) of the form

∫
Dk

Rk
1 (x, s)ki (x)dx ≈ 0,

∫
Dk

Rk
2 (x, s)ki (x)dx ≈ 0,

(21)

for i = 1, ...,N + 1. Clearly, requiring these to be zero will

not yield a viable algorithm, as there would be no coupling

between elements. The heart of DG is to couple adjacent

elements using the so-called flux condition. This is obtained

by integrating the [ki (x)]′ terms by parts, inserting the flux

condition, and then reversing the integration by parts. We

illustrate this on Rk
2

(x, s).
∫
Dk

−∂uk

∂x
ki dx =

∫
Dk

ukki (x)′dx −
[
ukki

] xk
N+1

xk
1

≈
∫
Dk

ukki (x)′dx −
[
uk∗ki

] xk
N+1

xk
1

=

∫
Dk

−∂uk

∂x
ki dx +

[
(uk − uk∗)ki

] xk
N+1

xk
1

(22)

but the calculation is identical for the x−derivative of q in

(21). The approximation step introduces u∗ (and q∗) which

give rise to the numerical fluxes which combine boundary

information from the two elements in contact at the interface

at xk
1

or xk
N+1

. While many choices of numerical fluxes exist,

we opt to use a local DG flux [10] of the form:

u∗(xk1 ) = uk
1 , u∗(xkN+1) = uk+1

1 ,

q∗(xk1 ) = qk−1
N+1, q∗(xkN+1) = qk

N+1.
(23)

The motivation for these fluxes is to model an upwind scheme

as was done for parabolic equations and obtain an optimal

order of convergence (see p.247-253 in [10]).

We define the vectors �k (x) = (k
1

(x), ..., k
N+1

(x))T and

similarly for uk (s) and qk (s). We also introduce the mass

and stiffness matrices

Mk
i j =

∫ xk
N+1

xk
1

ki 
k
j dx, Sk

i j =

∫ xk
N+1

xk
1

dki
dx
kj dx. (24)

Thus (21) and (22) yield:

qk =(Mk )−1Skuk − (Mk )−1
[
(u − u∗)�k

] xk
N+1

xk
1

, (25a)

i
duk

ds
=ak (Mk )−1Skqk − ak (Mk )−1

[
(q − q∗)�k

] xk
N+1

xk
1

+ Bkqk + Ckuk + fk .
(25b)

Here Bk = diag(bk
1
, ...,bk

N+1
) and similarly for Ck .

In the code we combine all K elements, thus we can ar-

range the solution as an (N + 1) × K array with mass and

stiffness matrices common to all elements. This approach en-

ables the right-hand-side operations to be done using dense

matrix-matrix multiplication. Boundary conditions are han-

dled by adjustment of the fluxes (23). Dirichlet conditions

such as for V are imposed by:

u∗(x1
1) = u(xin ), u∗(xK

N+1) = u(xout ),

q∗(x1
1) = q1

1 , q∗(xK
N+1) = qK

N+1,
(26)

and Neumann conditions such as for W are imposed on q∗
instead of u∗. The (u,q) systems for V and W are evolved in

s separately using a Runge-Kutta scheme. The restriction for

Δs scales as in (14) with Δx as the minimal distance between

two nodes on an element. We use Legendre-Gauss-Lobatto

quadrature nodes (see p.43-51 in [10]) due to advantages in

matrix conditioning; however, this choice of nodes imposes

severe restrictions on Δs at high orders N . A balance of K
and N is needed for optimal efficiency.

NUMERICAL RESULTS
In this section we examine several aspects for a line charge

model (i.e. σy → 0). First we compare results for V in the

FD and DG schemes of the previous section, emphasizing

both computational accuracy and efficiency. Next, we ex-

amine the convergence of the Fourier series sum over p of

Êyp . Lastly, we compute the longitudinal impedance from

a relation for Êsp using V and W .

Finite Difference versus Discontinuous Galerkin
For our numerical tests, we use the following parameters

(as in [3, 6, 8]):

xin = −0.030 m xout = 0.030 m

h = 0.020 m R = 1.000 m

q = 10−12 C β = 1

k = 8 · 103 m−1 p = 1
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A common grid of points in x is used for the error com-

parisons of both FD and DG methods. A reference solution

for V at s = 0.200 m is computed by the FD scheme with

Nres = 5760. The FD scheme errors are tabulated below.

Nres 240 480 960 1920

L∞ Error 1.46e-4 1.06e-5 1.31e-6 4.58e-7

L2 Error 1.24e-4 9.08e-6 1.40e-6 4.61e-7

Time 0.4 s 2.4 s 6.9 s 15.0 s

Our FD method exhibits almost optimal self-convergence

(convergence with respect to a higher resolution solution),

but tapers off at higher resolutions. We attribute this to the

jump discontinuities at x = 0 of the source terms in (10).

Next, the DG scheme with the same parameters is com-

pared for varying order N and elements K . A reference

solution for V is computed using (N,K ) = (12,80) which is

compared on the set of nodes for (N,K ) = (2,20), common

to all solutions.

K\N 2 4 6 8

2.91e-2 9.01e-3 5.67e-4 1.97e-5

20 3.69e-2 5.22e-3 2.67e-4 8.49e-6

0.04 s 0.22 s 1.0 s 2.8 s

8.89e-3 1.92e-4 2.18e-6 3.36e-8

40 9.08e-3 2.03e-4 2.13e-6 3.10e-8

0.10 s 1.0 s 4.4 s 14 s

1.88e-3 1.22e-5 3.64e-8 1.82e-9

80 1.26e-3 7.98e-6 2.23e-8 1.96e-9

0.50 s 5.0 s 24 s 77 s

Above, we list the L∞ (top), L2 (middle), and CPU times

(bottom) for varying values of K and N . In both the FD and

DG methods, the order of self-convergence becomes sub-

optimal once the resolution is high enough. Again, this loss

of self-convergence is attributed to the discontinuous sources

as in FD. Both FD and DG methods display comparable

efficiency by comparing the CPU times in the tables for

similar errors.

0.03 0.02 0.01 0 0.01 0.02 0.031

0.5

0

0.5

1

x (m)

Ê
y
p
(V

/m
)

Figure 1: Real (red) and imaginary (blue) parts of DG ref-

erence solution for Êyp using N = 12, K = 80, p = 1,

k = 8 · 103 m−1, at s = 0.200 m .

Fourier Series Convergence
To construct the solutions in y we use the Fourier series

as defined in (2). We concentrate on Êy defined as:

Êy =

∞∑
p=1

Êyp cos
(
αp (y + h/2)

)
(27)

It is important to note that while each Êyp is bounded, the

infinite sum introduces a singularity at (x, y) = (0,0) for a

line charge model. We wish to study the L2 self-convergence

of the partial sums in (27). Thus we subtract the singularity

adopting the approach used in [4–8]. The singular term in

Êy , by the expression in [4], is:

Êb
y =

qZ0cλ̂(k)
2π

y

x2 + y2
. (28)

Defining Êr
y = Êy − Êb

y , we obtain

Êr
y =

∞∑
p=1

[
Êyp − Êb

yp

]
cos
(
αp (y + h/2)

)
, (29)

with Êb
yp as the Fourier series components of (28). Thus,

we can examine the L2 self-convergence of Êr
y . We take the

pmax = 39 partial sum (p = 1,3, ...,pmax ) as a reference so-

lution for (29) for k = 8 ·103 m−1. This solution is compared

to the partial sums for varying pmax .

0 2 4 6 8 10 12 14 16 18 2010 3

10 2

10 1

100

pmax

L
2
er
ro
r

Figure 2: L2 error Êr
y for varying pmax , with 1441 × 481

(x, y) grid, k = 8 · 103 m−1, and s = 0.200 m .

The self-convergence plot in Figure 2 shows only a few

p-modes are necessary to obtain a solution accurate to 10−2.

The solutions were computed in ∼100 seconds for pmax =

19 at this resolution. In contrast, in [3], this took ∼1000

seconds for the same parameters using a 2D FD method.

Thus, this 1D approach provides a large computational speed-

up over the 2D FD method in [3] using the same computer

hardware. The reference solution of Êr
y as a surface plot is

displayed in Figure 3.

CSR Impedance
In this section we compute the longitudinal impedance by

examining the dependence of Ês on kR. The Ês field Fourier
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Figure 3: Reference solution for Re(Êr
y )/λ̂(k) (top),

Im(Êr
y )/λ̂(k) (bottom) with pmax = 39, 1441 × 481 (x, y)

grid, k = 8 · 103 m−1, and s = 0.200 m .

series components are given in terms of the p-dependent V
and W by:

Êsp =
−1

γ2
p

[
αpR
x + R

(
ik
(
V + σxΘ

)
+
∂V
∂s

)
− ik Z0

∂W
∂x

]
.

(30)

We mention here that the transforms in s − ct and y also

yield formulas for Êxp , Ĥxp , Ĥsp which depend only on

V and W and their s and x derivatives. The ∂/∂s terms in

(30) are computed by the right-hand-sides of (10). Also of

note, the imaginary part of the function Êsp becomes very

sharply peaked at x = 0 with increasing p and thus requires

finer spatial resolution as the desired accuracy is increased.

Numerical experiments suggest that the values of Ês are

inaccurate for x ∈ {−Δx,0,Δx} and that Ês is smooth. Thus,

we fit a spline to the points x ∈ {−3Δx,−2Δx,2Δx,3Δx}
and use this in the associated interval. For this numerical

test we use the following parameters:

xin = −0.032 m xout = 0.078 m

h = 0.032 m R = 7.143 m

q = 10−12 C β = 1

We examine the value of Ês at (x, y) = (0,0) at the end of

the bend at s = 2.00 m. This solution for Ês is computed

using Nres = 480 and pmax = 9 with the spline correction.

The result is shown in Figure 4, where we see a smooth

solution with no visual numerical artifacts.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
x 104

0.025

0.02

0.015

0.01

0.005

0

0.005

kR

Ê
s

Figure 4: Above, Re[Ês] (red), Im[Ês] (blue) is plotted

versus kR evaluated at (x, y) = (0,0) using pmax = 9 modes

with λ̂(k) set to 1/(2π).

CONCLUSION
Summary

We have modeled CSR in a rectangular toroidal bend and

achieved results similar to [3] in a fraction of the computation

time. Our new method revolving around the Fourier series

in y has greatly reduced the computational complexity of

the system and resulted in reasonable approximations to the

CSR fields using only a few p-modes.

The comparison between FD and DG methods enabled us

to explore newer numerical techniques and make decisions

on future codes based on the different methods. We have

shown DG to be superior in the full 2D problem without the

Fourier series in y [3].

Future Work
We aim to adjust our algorithms to allow for perturbations

in the wall positions xin (s) and xout (s) to more accurately

describe complex vacuum chambers. This adjustment must

be made carefully as to not violate the paraxial approxi-

mation. We have currently developed an approach using a

coordinate transformation to a constant-width chamber but

need to examine computational limitations (particularly for

complex chamber geometries with large excursions).

Another area of interest is in dropping the paraxial ap-

proximation to examine the fields in a chamber with arbi-

trary walls. Our ongoing analysis suggests the use of a

time-domain (non-paraxial) approach to treat Maxwell’s

equations in that setting.
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