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Abstract 
X-Ray Smith-Purcell radiation, i.e. the radiation from a 

beam of charged particles moving above a periodical 
target parallel to its surface, is considered for the case 
when a part of the beam crosses the target. The radiation 
arising is the superposition of Smith-Purcell radiation 
and transition radiation (TR) from the grating. The 
analytical expression for spectral-angular distribution of 
radiation is obtained. It is shown that characteristics of 
radiation in this case differ considerably from the 
characteristics of radiation for the bunch with uniform 
distribution. The incoherent form-factor of bunch with 
Gaussian distribution of particles has been obtained; it is 
proved to provide a considerable increase of the radiation 
intensity in conditions when bunch skims the grating. 

INTRODUCTION 
Smith-Purcell radiation as a base of Free Electron 

Lasers is actively studied experimentally and theoretically 
in recent years [1]-[3]. Usually the beam is supposed to 
move at some distance above the target surface. In 
practice this distance is chosen to be minimal in order to 
broaden the spectrum of radiation to high frequencies, 
therefore the beam passes very close to the target surface. 
Along with that, experimental data contains the 
information about grating heating, which is apparently 
caused by interaction of the beam with the grating. For 
example, authors of article [4] suppose that the beam 
skims the grating surface. There has been no theory of 
Smith-Purcell radiation for such conditions yet. We give 
the analytical description of X-Ray radiation arising when 
the beam of charged particles moves above the periodical 
target and a part of the beam crosses the target. The 
radiation arising is the superposition of Smith-Purcell 
radiation and transition radiation (TR) from the grating. 
This radiation determines the process of beam bunching 
and, consequently, gains of radiation. 

Talking of SPR in this article we shall mean that this is 
the special case of DR – Diffraction radiation for 
periodical target, i.e. grating. So, sometimes we shall 
mention DR, meaning that lion share of the bunch goes 
above the target surface, and sometimes mention TR, 
when considerable part of the bunch intersects the edges 
of the target. 

FIELD OF RADIATION 
We consider Smith-Purcell radiation from the bunch of 

N  particles. The grating consists of stN  strips with 
________________________  
*tishchenko@mephi.ru  

dielectric permittivity  and vacuum between the 
strips. The width of a strip is a , the grating period is d . 
We assume that each particle has the charge e  and moves 
uniformly with the constant velocity , ,0 ,x yv vv  is 
the angle between the beam velocity and axis x , see 
Fig.1. The center of the bunch is at a distance h  above 
the grating surface 0h  or under the surface 0 .h  

The radius-vector of m-th particle is , , .m m m mx y zr  
We would like to emphasize that these coordinates can be 
negative. To find the field of radiation we use the method 
of polarization, described for single-particle radiation in 
more detail in monograph [5] and developed for the 
radiation from the bunch in [6], [7]. 

 

 
Figure 1: Bunch skimming a grating surface generates 
radiation (a) side view; (b) top view. 

In X-Ray frequency range the dielectric permittivity 
has the form: 

1 ,i         (1) 

where 2 2 ,p  p , p  is the plasma 
frequency. Now we consider non-absorbing medium i.e. 

.  
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The Coulomb field of each particle polarizes the target 
and due to it the radiation is generated. The polarization 
current density has the form: 

0, 1 , .
4 i

j r E r   (2) 

Here 0 ,E r  is the Coulomb field of the bunch. Its 
Fourier image can be written as: 

2

0 2 2 2 2
1

, .
2

m

N
i

m

ie
e

q c
qrq vE q qv   (3) 

The field of radiation is defined by polarization current 
density [1]: 

3
2, , .

ik r
i

V

i e
d r e

c r
k rE r n n j r  (4) 

Here ck n  and the prime means the value in 
the medium. In Eq. (4) it is integrated over the area of 
generation of the radiation, i.e. over the volume of the 
target .V  

It should be noticed that if the problem contains the 
interference and coherence phenomena then it is needed 
to take into account the law of refraction even in high-
frequency region [6]. In this paper we allow it for the 
upper edge: 

1
22 , , 1 ,x y zn n nn   (5) 

, ,x y zn n nn  - the unit vector of the wave-vector in 

vacuum: ck n . It is easy to see that the minimal 
value of zn  exists: 

min 1 ,zn   (6) 

for which the waves incident to the target edge are 
ordinary plane waves. For min

z zn n  the incident waves 
are evanescent. In this paper we shall consider only case 
of comparatively big angles min ,z zn n  because the case 
of radiation at grazing incidence needs more the case, so, 
we have the limit for defined by Eq. (6).  

Thus, after integrating in Eq. (4) using Eqs. (2), (3) and 
taking into account the law of refraction Eq. (5) one can 
obtain the field of Smith-Purcell radiation from the bunch 
skimming a grating surface: 

2 1
2 2

12

1

1
,

2

.

st

y mm z m

a dikr i i N

st
x

N
ik yi x ik z

m
m

e
ie e e F F

v rc

e e e

E r

n n L
  (7) 

Here 1

sin 2
,

a
F

sin 2
,

sin 2
st
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2 2 ,x y y x x y yk v vA e e e e          ,xk  
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INCOHERENT AND COHERENT FORM-
FACTORS 

Knowing the field Eq. (7)  one can obtain the spectral-
angular distribution of radiation: 

22,
, .

dW
cr

d d

n
E r   (8)

Angle brackets ...  mean the averaging over the 
locations of all the particles. Eq. (8) can be written as  

2 2
2 2

12

, 11 ,
137 2 st

x

dW
F F G

d d c

n
  (9) 

where  
22

2
1

.y mm z m

N
ik yi x ik z

m
m

G e e e
c

n n L   (10) 

The factor G  determines the radiation from the bunch, 
that is why we will call it form-factor; however, it differs 
from what is usually called form-factor (see Eq. (19) or 
monograph [5] in more detail). The reason to use this new 
denomination is that in our case it is impossible to 
separate from G  the multiplier usually contained in the 
spectral-angular distribution of the single particle. In the 
limiting cases of “pure” DR and TR our form-factor G  
(Eq. (10)) turns into the production of usual form-factor 
and the part of single-electron density of radiation. 

Factor 2
stF  defines the dispersion relation of Smith-

Purcell effect in Diffraction radiation (which is usually 
called mere Smith-Purcell radiation, SPR): it has sharp 
maxima at 

2 , 1, 2,...SP SPd n n , (11) 

where  

.xvkv   (12) 

Using properties of sum and averaging in Eq. (10) one 
can obtain the form factor as the sum of coherent and 
incoherent form-factors (see also [6]-[10]): 

 

1 .inc cohG NG N N G               (13) 
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Let us consider the bunch of non-interacting particles 
with Gaussian distribution. In this case the distribution 
function is 

  

22 2

22 2

sin coscos sin

3 2 ,

m mm m m

yx z

x yx y z h

x y z

e e e
f    (14) 

where h  is z-position of the bunch center, which can be 
both positive and negative. After some calculations it is 
possible to find cohG  and incG  from Eq. (10): 
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where 
2

0

2 x
tx e dt  - is the Laplace function, * - 

means conjugate complex value; 
1 1

3 ,z z

z z

in i
c ik c ik

An A eC n  

22 2 2 2 2sin cos
,

2
y y x x ysk

I
s

 

2 2 2 2cos sin .y xs  

We would like to draw reader’s attention to the 
exponents in Eqs. (15) and (16) which are proportional to 

the square of the radiation frequency (which is contained 
in , for example). It may seem that these exponents 
increase indefinitely with . However, it is known 
that for x  the asymptotic form of Laplace function 
is 

2

1 .
xe

x
x

  (17) 

Thus, cohG  and incG  decrease with growing of frequency 
(one can see it above in Fig. 2). Also, considering the 
limiting cases , 0h  (Diffraction radiation) and 

, h  (Transition radiation) it is useful to 
keep in mind that x x . The results obtained 
(Eq. (9) with Eqs. (13), (15) and (16)) for radiation of a 
single charged particle turn into results of article [11] in 
case of 0h  (DR), and into results of [12] in case of 

0h  (TR). 

ANALYSIS 
 To plot the figures we put: 

sin cos ,
cos ,

sin sin .

x

y

z

n

n

n

            (18) 

In all figures with the exception of Figs. 2 and 4 the 
length of the bunch is too big to observe the coherent 
radiation and this is the incoherent radiation that makes 
the main contribution. 

Figure 2 demonstrates the coherent and incoherent 
form-factors for Gaussian distribution of the particles in 
the bunch in dependence on the wavelength of radiation. 
It is plotted for parameters of SLAC (FACET, 

20E GeV ). To compare this two function we have to 
choose very short bunches ( 10x nm ). Had we not use 
that order of the bunch length, the coherent form-factor 
would have been too small to be noticeable. This 
functional behaviour is different for the bunch with 
uniform distribution of the particles [6]. Moreover, as 
opposed to the uniform distribution of the particles in the 
bunch, the incoherent form-factor dominates starting from 

x  and less, see Fig. 2. Nevertheless, both for 
Gaussian and uniform distributions the incoherent part of 
form-factor should be taken into account (see comparison 
between incoherent form-factors for Gaussian and 
uniform distributions in Fig. 3). Figure 3 is plotted until 
value of wavelength corresponding to 3 .p  

In Fig.4 the dependence of coherent and incoherent 
factors on is demonstrated. It is plotted for value of  
satisfying to the Eq. (6). The values of viewing angles 
satisfy the third maximum from Smith-Purcell dispersion 
relation ( 3SPn ). One can see that the more the angle 
between the beam velocity and the rulings direction is, the 
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more intensive radiation can be obtain. We would like to 
stress that in case 0  the radiation is distributed over 
the cone surface [13] with cone angle 

1arccos sin . The features of this case demand 
the separate consideration. For clarity, all figures 
hereafter will be plotted at 0 , excluding Fig. 4.  

 
Figure 2: The coherent (solid black) and incoherent 
(dashed red) form-factors for Gaussian distribution of the 
particles in the bunch. Here 26.3p eV (beryllium), 

44 10 (energy of FACET, SLAC), 1010 ,N  0,
6 ,  60 ,h m  10 ,x nm  5 .y z m  

 
Figure 3: The incoherent form-factor for uniform (dashed 
red, results from [6]) and Gaussian (solid black) 
distribution. Here 26.3p eV (beryllium), 44 10  

(energy of FACET, SLAC), 1010 ,N  0,  6 ,  
60 ,h m 20 ,x m  15 .y z m  

The spectral-angular distribution of Smith-Purcell 
radiation for different values of impact-parameter is 
shown in Fig. 5. Our results permit to see the transition of 
diffraction radiation (DR) into TR and, moreover, they 
describe the case when one half of the bunch is above the 
target surface, while the other is under it (see the black 
solid curve in Fig.5).  

 
Figure 4: The coherent (solid black) and incoherent 
(dashed red) form-factors for Gaussian distribution of the 
particles in the bunch depending on . Here 

26.3p eV (beryllium), 9.1 nm , 44 10

(energy of FACET, SLAC), 1010 ,N  60 ,h m  

10 ,x nm  5 ,y z m  1arccos sin ,

3,SPn
cos 21arccos .

sin
SPcn d

  

 

 
Figure 5: The spectral-angular distribution of radiation 
from the bunch when its center is above the target surface 
(dashed red), under it (dotted blue), on the surface (solid 
black). Here 7stN , 0.9d m , 2a d  and other 
parameters as in Fig. 3. 
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Figure 6: The spectral-angular distribution of radiation 
from the bunch when its center is under the target surface 
(dashed red and dotted blue) and on the surface (solid 
black). Here 26.3p eV (beryllium), 20  (energy 

of LUCX (KEK, Japan)), 7,stN  1010N , 0,  
6,  30 ,x m  10 ,y z m  0.9 ,d m

2.a d  

The spectral-angular distribution of the radiation from 
the bunch moved under the target surface for 
comparatively low energy of electrons is shown in Fig. 6. 
With growing of the distance between the bunch center 
and the target surface the differences in intensity of 
radiation becomes insignificant and goes to the 
distribution of TR from the infinity strips.  
 Usually, the spectral-angular distribution of radiation 
from the bunch is written in the following form:  

1, ,
1 ,coh

dW dW
N N N G

d d d d

n n   (19) 

where 1 ,dW d dn  is the spectral-angular 
distribution of radiation from a single particle; the 
designation cohG  with prime is used in order to indicate 
that it does not coincide with the coherent form-factor 

cohG  from our expression (see Eqs. (13) and (16)). 
We would like to stress, that form of Eq. (19) is, 

generally speaking, not correct. There are two reasons for 
this. First is that in Eq. (19) the incoherent form-factor 
has not been taken into account. Second, using Gaussian 
distribution we always deal with the polarization 
radiation, which is the mixture of Diffraction radiation 
and Transition radiation – there are the “tails” of 
distribution that are on the other side of the upper edge of 
the target. Therefore, we can tell about TR or DR only in 
limiting cases, when bunch is distant enough from the 
upper edge of the target.  

In Fig.7 we plot the correct distribution (solid black 
curve) and distribution from Eq. (19). As one can see, the 
difference can be considerable.  

The spectral-angular distribution depending on impact-
parameter is shown in Fig. 8. The angle  corresponds to 
the third peak of SPR. Black solid curve corresponds to 

our results, red dashed - to the results obtained by usual 
way (see Eq. (19)). One can see that for impact-parameter 

zh  they are very close to each other, but for negative 
h  situation changes.  

 
Figure 7: The spectral-angular distribution of incoherent 
radiation for correct (black solid, incG  from Eq. (15)) and 
incorrect (red dashed, 1incG ) calculation of the form-
factor. Here 7,stN  0.5 ,d m  2 ,a d  3 ,p

17h m  and other parameters as in Fig. 3.  

 
 
Figure 8: The spectral-angular distribution depending on 
impact-parameter: DR for 0h , TR for 0h . Black 
solid curve corresponds to our results, red dashed - to the 
usually considered results (see Eq. (19)). Here 7,stN  

0.5 ,d m  2 ,a d   24.6  ( 3SPn ) and other 
parameters as in Fig. 3. The curves are plotted for 

3 p , i.e. 20x m , which corresponds to 
incoherent radiation. 

CONCLUDING REMARKS 
The existence of incoherent form-factor was denoted 

more than a decade ago [9], [10], but for the first time it 
has been obtained in analytical form and analyzed only 
recently [6] for uniform distribution of the electrons in 
bunch.  
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In this work we obtain the incoherent form-factor for 
Gaussian distribution, along with the coherent one. It is 
proved, that for the case considered (particles of the 
bunch go both through the target and above it), spectral-
angular distribution of radiation has the features both 
resonant DR and resonant TR. Therefore, the resulting 
intensity of radiation coincides with habitual Eq. (19) in 
case of incoherent X-ray TR only when 4h , 

and in case of DR only when min , 4zh  - see 
Fig. 8. It is interesting to see, that Fig. 8 demonstrates the 
strong effect of the edge, and along with that shows the 
peak of transition radiation caused by incoherent form-
factor. 

The theory developed is valid for arbitrary energies of 
the particles, for Gaussian distribution and for UV and X-
ray domain of photon energies ( p , which in 

practice stands for 3 p ).  
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