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Abstract
An amplifier Free electron Laser (FEL) including two

orthogonal polarized undulators with different periods and

field intensities is able to emit two color radiations with dif-

ferent frequency and polarization while the total length of

device does not change respect to usual single color FELs.

The wavelengths of two different colors can be changed by

choosing different periods, while variation in the magnetic

strengths can be used to modify the gain lengths and satura-

tion powers.

INTRODUCTION
Recently generation of free-electron laser radiation with

two or more simultaneous colors opens new promising chap-

ter in applications [1, 2] and in the study of the underlying

physics. The packets contain two different spectral lines with

adjustable time separation between them. Applications exist

over a broad range of wavelengths involving pump-probe

experiments, multiple wavelength anomalous scattering, or

any process where there is a large change in cross section

over a narrow wavelength range [3].

In order to produce this type of radiation several schemes

have been proposed, and many promising theoretical pro-

posals have been so far investigated. Some of the initially

proposed designs were based on the use of staggered undula-

tor magnets having different values of deflecting parameters

to achieve lasing at two distinct wavelengths [4–7]. In this

way, the length of the FEL undulator is essentially doubled

and a complex scheme is required to reach saturation and

power levels comparable with the single color configura-

tion. A different technique involving the use of either a

chirped or a two-color seed laser, is recently demonstrated

at the FERMI soft X-ray FEL. It initiates the FEL instabil-

ity at two different wavelengths within the modulator gain

bandwidth [8, 9]. Another option is relying on injection

of multi-energy electron beam in the FEL undulator [10]

resonating at two different wavelength, allowing the control

of frequency and time separation ranges of the FEL pulses,

while maintaining similar saturated power levels and min-

imal undulator length [11, 12]. In this configuration, the

SASE lasing occurs from separated and nearly independent

electron distributions [13].

Recently a new proposal with a further different scheme

has been presented in reference [14, 15]. In this case the
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FEL emission is obtained from two orthogonally polarized

undulators with different polarized and field intensities. The

two radiations have not only different frequencies, but also

different polarizations, while the total length of the device

does not change with respect to usual single color FELs.

Producing two waves with orthogonal polarizations with

comparable intensities is very important because it opens

various possibilities to get insights into and to control the

internal organization and orientation in space of molecules,

taking advantage of the selective excitation of the molecular

fluorescence by differently polarized beams.

This paper presents a brief overview over the main the-

ory of the production and properties of two-color radiation

generated by two orthogonal undulators.

MODEL EQUATION IN AN AVERAGED
AND NON AVERAGED SVEA

TREATMENT
The FEL undulator is assumed to be composed by two

linear undulators orthogonally polarized with periods given

respectively by λ01 and λ02. and deflection parameters

K1,2 =
���eB1,2λ01,02/mc2���. The undulator magnetic field,

in the paraxial approximation, is described by the following

expression

Bw = −Bw2 sin(k02z)êx + Bw1 sin(k01z)êy , (1)

where k01,02 = 2π/λ01,02 .
Following the Colson’s analysis [16], the zero order di-

mensionless velocity components can be written as

βx,y = −K1,2

γ0
cos(k01,02z) ≈ −K1,2

γ0
cos(ω01,02t), (2)

βz = −1
4

⎡⎢⎢⎢⎢⎣
(

K1

γ

)2
cos(2k01z) +

(
K2

γ

)2
cos(2k02z)

⎤⎥⎥⎥⎥⎦ + β0
(3)

with βx (y), j = vx (y), j/c and β0 = 1/
√
1 − γ2

0
. From Eq (3)

the following resonance conditions can be found.

λ1,2 =
λ01,02

2γ2
0

(1 + K2
1/2 + K2

2/2). (4)

The trajectories of the electrons inside the undulator takes

the form:
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r = β0ctêz − K1

k01γ0
sin(ω01t)êx − K2

k02γ0
sin(ω02t)êy (5)

− λ01
16π

K2
1

γ2
0

sin(2ω01t)êz − λ02
16π

K2
2

γ2
0

sin(2ω02t)êz .

The longitudinal motion at zero order is described by:

z = β0ct − ξ1
k1

sin(2ω01t) − ξ2k2
sin(2ω02t), (6)

with ξ1,2 =
K 2
1,2

4(1+K 2
1
/2+K 2

2
/2)
.

The the proportional one-dimensional vector potential is

assumed as

A = −i
[
A1ei (k1z−ω1t ) êx + A2ei (k2z−ω2t ) êy

]
, (7)

A1,2 are slow complex amplitudes, k1,2 = 2π/λ1,2 . In the
following, we will assume nλ01 = mλ02; in this way, we
will treat both the case of an harmonic relation between λ1
and λ2, and the case where m/n is a generic rational number,
describing all other situations.

In order to write the FEL equation in universal scaling

notation [17], we define the normalized fields as a1,2 =
ω1

ωp
√
ρ1γ0

eA1,2

mc2
where

ρ1,2 =
1

γ0

[
ωpK1,2F1,2
8ω01,02

]2/3
(8)

is the FEL parameter and ωp is the plasma frequency. In

terms of the scaled quantity Γi =
γi−γ0
ρ1γ0

, and, the phases

θ1,2 = ω01,02t + k1,2 βzct −ω1,2t the equations are therefore:
dΓi
dτ
= eiθ1i a1 +

F2
F1

K2

K1

kw2
kw1

eiθ2i a2 + cc. (9)

∂a1
∂ζ
+
1

c
∂a1
∂τ
=

∑
e−iθ1i . (10)

∂a2
∂ζ
+
1

c
∂a2
∂τ
=

K2kw1
K1kw2

F2
F1

∑
e−iθ2i , (11)

where F1,2 = J0( k1,2ξ2,1k2,1
)[J0(ξ1,2) − J1(ξ1,2)] are the Bessel

factors modified for the case of two undulators. The phases

in field equations are

dθ1i
dτ
= Γi ,

dθ2i
dτ
=

k02
k01

Γi . (12)

Therefore the gain length of the two polarization, when

m � n are

Lg1 =
λ01

4π
√
3ρ1
= (
λ01
λ02

)1/3(
F2
F1 )2/3Lg2. (13)

In a non averaged orbit approximation, Lorentz force equa-

tions are employed directly. Then the electron momentum

equations for j th electron are

dpx,y

dt
= eβzB1,2sink01,02z− ek1,2(1− βz )[A1,2eiα1,2 + cc]

dpz
dt
= −eβyB2sink02z − ek2 βy [A2eiα2 + cc] (14)

−eβxB1sink01z − ek1 βx [A1eiα1 + cc]

where α1,2 = k1,2z−ω1,2t. By writing the transverse current
in terms of the particle density n̄ as Jx,y = −∑

ecβx,y n̄δ(z−
z j ) in Maxwell’s equation and by using the Slowly Vary-
ing Envelope Approximation (SVEA), we obtain the two

following independent differential equations

∂

∂z
A1,2 +

1

c
∂

∂t
A1,2 =

2πen
k1,2

∑
βx (y), jδ(z − z j )e−iα1,2

(15)

TWO PULSES SASE FEL EMISSION
In the approximation of the time independent scheme, the

set of non averaged (14-15) and averaged (9-12) equations

have been integrated numerically with independent codes.

Both codes employ the forth-order Runge-kutta method to

demonstrate the evaluations of FEL system. In non averaged

code the Runge-Kutta step size must be small enough to

demonstrate the particles motion in the wiggler. At the

first step the particles are assumed to be unbunched and

monoenergytic.

The parameters chosen for the simulations, similar to the

SPARC’s [18,19], are: λ01 = 2.8 cm, K1 = 2.1, γ0 = 300 ,
and the electron current I has been fixed at 100 A, for a value
of ρ1 = 5.47 × 10−3. In simulation thermal and diffraction
effect are ignored.

The comparison between the solutions of averaged (blue

curves) and non averaged (red curves) equations is demon-

strated in Fig. 1 for (a) λ02 = 1.5λ01, (b) λ02 = 2λ01 and (c)
λ01 = 10λ02, with the two magnetic strengths fixed at the
same value K1 = K2.

The agreement is indeed significant along all the growth

up to the onset of saturation. Discrepancies arise, instead,

once that the saturation is reached, particularly when the

two waves have similar intensity (case (a)), probably due

to the differences in the sets of equations and to the differ-

ent method of integration. Black curves, labeled with (T),

indicate the logistic map proposed in [20], and given by

P1,2 =
P01,2A1,2e(0.223t/Z1,2)

(1 + P01,2

Ps1,2
(A1,2 − 1))

. (16)

A1,2 = (
1

3
+
2

9
cosh(

t
Lg1,2

)+
4

9
cos(

√
3t

2Lg1,2
) cosh(

t
2Lg1,2

))
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Figure 1: Power P(W ) in the x (solid curves) and y (dashed curves) polarizations vs z(m). Comparison between non
averaged (red curves) and averaged (blue) model for (a) n/m = 1.5 and (b) n/m = 2 and (c) m/n = 10. The black line is the
logistic map, Eq (16). In green σE/E, as given by Eq (18). Green starts: energy spread computed by the phase spaces
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Figure 2: Ratio of gain length of both pulses vs m/n , K1 =

K2 = 2.1

with Z1,2 = 1.066Lg log(9 Ps1,2

P01,2
) and Ps1,2 = 1.42ρ1,2Pb ,

being the saturation power as a function of the beam power

Pb . As can be seen, formula (16) fits very accurately lethargy,

growth and gain lengths of both waves, while the saturation

value is of the same order only for one of the two polariza-

tions. This is due to the interaction between the two waves

occurring when the power in the two polarizations is large

enough, an effect which is not accounted in Eq (16). In

fact, through electron interaction an induced increase in the

energy spread σE occurs, as can be seen in Fig. 1, where

the relative value σE/E , computed by the phase space, is

presented together with the analytical formula [20]

σE

E
=

√ [
σ1
E

]2
+

[
σ2
E

]2
(17)

where:

σ1,2

E
=
3

2

√
ρ1,2P01,2

Pb

√√
A

1 + 1.24
P01,2

Ps1,2
(A1,2 − 1)

. (18)

The growth of the energy spread continues up to the value

of ρ2, and then, saturates, producing also the anticipated
saturation of the radiation with the longer gain length.

The graph of the coefficient Lg1/Lg2 versus different

value of the m/n while the two magnetic strengths are fixed
at the same value K1 = K2 is shown in Fig. 2. It shows from

m = 1 to about m = 9 the largest frequency wave has a

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

K2/K1

L g
1/L

g2

m/n=0.5
m/n=2
m/n=5

Figure 3: Ratio of gain length of both pulses vs K2/K1 , for

different values of m/n.

shorter gain length, while for m larger than 9 the opposite

occurs.

Figure 3 shows the ratio of gain length of both pulses

versus K2/K1with fixed m/n = 0.5, 2, 5. The slop of the
ratios increases as well as the value of the m/n increases.

As a result the wavelengths of two different colors can

be changed by setting different periods, while variations in

the magnetic strengths have the effect of modifying the gain

lengths.

According to general FEL theory the saturation power and

length are dependent on the FEL parameter ρ1,2, however
the numerical simulations show that the interaction between

the two waves can change the level of the saturation power.

When one wave reaches saturation, the electrons are strongly

influenced by its electric field, so the growth of the other

one is affected. In order to balance the level of the power

in the two different polarization at the end of the undulator,

the magnetic strength of one of the two waves can be varied.

We fixed the vertical undulator properties (K1 = 2.1 and
λ01 = 2.8cm ), while K2 is varied for different n/m. The
ratio of the power of the pulses at the first saturation point is

reported vs K2 in Fig. 4 for various values of n/m between

0.5 and 2. When n/m = 2, since ρ1 > ρ2, the first wave
going in saturation was the x-polarization and the power

amount of Ps1 = 168 MW is reached in zs = 7.2m . The

power of the y-polarization in this same point can be varied

by using different values of K2. In the case n/m = 1.5,
both x and y-polarizations saturate at z1s ≈ 6m, and the
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Figure 4: The power ratio of x-polarization to y-polarization

for different value of n/m, while K1 = 2.1 and λ01 = 2.8cm.

x-polarization reaches the value Ps1 = 168 MW . In the

case n/m close but not equal to 1, the waves saturate in close

positions, the saturation length does not depend strongly

on K2, while, instead, the power ratio depends on it. For

n/m = 1, the gain length follows

Lg1 = Lg2 =
λ01

4π
√
3(1 + ( F2F1

K2

K1
)2)1/3

(19)

and the ratio between the powers has a different trend. For the

cases n/m < 1, since the ratio between the FEL parameters is
less than one (ρ1/ρ2 < 1), the first wave going to saturation
is the y-polarization. If m/n is integer (as, for instance the
case n/m = 0.5) the waves saturate in different points. In
otherwise (like n/m = 0.75 ) both waves saturate in same
position but in different power levels.

CONCLUSION
Emission of two pulses from two orthogonal undulators

with different polarizations and periods have been discussed.

Non averaged and averaged equations have been present. The

agreement between these two models as regards lethargy,

growth and gain length of the radiation, with discrepancies

appear in saturation have been demonstrated. The advantage

of this kind of device is production of two color radiation

with an easy control of the frequencies and opposed polar-

izations, while the total length of the device does not change

respect to usual single color FELs. The possibility of chang-

ing independently the strength of the two magnetic fields

allows to control the final power and the saturation length.
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