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Abstract
This paper introduces an iterative approach to produc-

ing flat-topped radio frequency (RF) pulses for driving the
pulsed linear accelerators in the Swiss free electron laser
(SwissFEL). The method is based on model-free iterative
learning control which iteratively updates the input pulse
shape in order to generate the desired amplitude and phase
pulses at the output of the RF system. The method has been
successfully applied to the klystron output to improve the
flatness of the amplitude and phase pulse profiles.

INTRODUCTION
The SwissFEL project at PSI will develop a Free Electron

Laser capable of generating extremely bright and short X-
ray pulses [1]. The SwissFEL injector and linac RF drives
operate in a pulsed mode at the rate of 100 Hz, using normal
conducting RF accelerating structures. The input RF pulse
length is relatively short (in the order of 1-3µs) and there
is no RF digital feedback running within a pulse. In the
two-bunch operating mode of the SwissFEL, each electron
bunch is separated by 28 ns, and it is often required that
the two bunches see the same amplitude and phase in the
accelerating structure. To achieve this goal, an Iterative
Learning Control (ILC) technique is introduced to generate
a flat-topped (or generally any desired shape) RF pulse.
Iterative Learning Control is a method for controlling

systems that operate in a repetitive, or trial-to-trial mode
[2,3]. In this method, the measured trajectory is compared to
the desired trajectory to give an error estimate which is then
used to update the input for the next trial. Amodel-based ILC
algorithm has been previously introduced in [4] which uses
an intra-pulse state feedback and it has been implemented
in several systems [5] including accelerators [6]. However,
this approach is not applicable in the SwissFEL since no
intra pulse digital feedback is feasible. A new version of
ILC has been recently developed which is not based on the
model of the system and thus the usual system identification
procedure is not required [7]. The recent method has been
modified and successfully tested on a C-band RF station in
the SwissFEL test facility.

RF STATION LAYOUT
The RF and low-level RF layout of the SwissFEL C-band

station is illustrated in Fig. 1. The discrete waveforms of
∗ Work supported by Paul Scherrer Institut.
† aminre@ee.ethz.ch

the in-phase, I, and quadrature, Q, components of the RF
signal are fed into the vector modulator to be up-converted to
the carrier frequency (5.712GHz). Each waveform contains
2048 samples with the sampling time of Ts = 4.2 ns. The
RF signal drives the klystron which delivers high power RF
at the output. In C-band stations, an RF pulse compressor
(Barrel Open Cavity) is placed after the klystron, followed
by four accelerating structures.
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Figure 1: The RF layout of the SwissFEL C-band station.

For our experiment, we take the output of the klystron as
the measured pulse whose shape is to be controlled. The
signal is measured by a directional coupler and then down
converted to the intermediate frequency (IF) of 39.67 MHz.
The resulting signal is then sampled at the rate of 238 MHz,
followed by a demodulation algorithm to obtain discrete
waveforms of I and Q. The measured waveforms are com-
pared to the desired ones and the ILC controller generates
the next I and Q inputs to the DAC.

ITERATIVE LEARNING CONTROL
SCHEME

The ILC is a technique to manipulate the input pulse shape
iteratively until the output pulse shape fulfills the require-
ment. Model-free ILC methods are rarely investigated in
literature, in contrast to a variety of model-based methods.
Model-free ILC algorithms have the advantage that no sys-
tem identification experiments are required. The idea behind
our approach was developed by Janssens et al. [7].

Figure 2 illustrates the initial output signals of the klystron
as a response to a rectangular input pulse. The colored area
which is after filling time of the structures, denotes the region
in which the electron bunches are fired. We refer to it as
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the “flat-top” region, where ideally the pulse amplitude and
phase should be constant.
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Figure 2: A typical pulse generated by the klystron. The
measurement window consists of 2048 samples with sam-
pling time of Ts = 4.2 ns. The electron-bunches are fired
after filling time of the structures somewhere in the colored
area, which we refer it to as the flat-topped region. The
amplitude is normalized with respect to the saturation level
(with 5% headroom).

For the notation throughout this paper, subscript i denotes
the iteration counter, whereas index k captures the discrete
time instants within one RF pulse. The following input
update law is considered for an LTI SISO system,

ui+1(k) = ui (k) + ulc, i (k) ∗ αi (k), (1)

where ui (k) ∈ R, k ∈ {1,2, ...,N }, and ulc, i denotes
any linear combination of the previous trials’ input signals
u0(k),u1(k), ...,ui (k), and where αi (k) is a trial-varying but
LTI FIR filter of length N. The asterisk denotes convolution.
Since the system is assumed to be LTI, the corresponding
output yi+1(k) is predicted to be

ŷi+1(k) = yi (k) + ylc (k) ∗ αi (k), (2)

where ylc represents the corresponding linear combination
of the previous trials’ output signals y0(k), y1(k), ..., yi (k).
Equation 1 can be extended to MIMO systems by using

the lifted system representation,

ui+1 = ui +Ulc α̃i , (3)

where
ui :=

(
uI i

uQi

)
, uI i ,uQi ∈ R

N ,

and where,

uI i =

*.....
,

uI i (1)
uI i (2)
...

uI i (N )

+/////
-

, uQi =

*.....
,

uQi (1)
uQi (2)

...
uQi (N )

+/////
-

, (4)

and N denotes the number of samples in the flat-top region.
Moreover,

Ulc =

(
Ulc I UlcQ 0 0

0 0 Ulc I UlcQ

)
, α̃i =

*....
,

αI I i

αIQi
αQI i
αQQi

+////
-

where Ulc I and UlcQ denote the lower-triangular Toeplitz
matrices of ulc I (k) and ulcQ (k), respectively.
A similar relationship can be derived for y,

ŷi+1 = yi + Ylc α̃i , (5)

where,

Ylc =
(

Ylc I YlcQ 0 0
0 0 Ylc I YlcQ

)
,

and similarly, Ylc I andYlcQ are the lower-triangular Toeplitz
matrices of ylc I (k) and ylcQ (k), respectively.
Model-free ILC begins with the following optimization

problem to determine the optimal filter α̃i ,

minimize
α̃i

‖ ŷi+1 − yd ‖
2
2 + r ‖α̃i ‖

2
2

subject to ŷi+1 = yi + Ylc α̃i

(6)

where r is a weight on the input changes, and where yd
denotes the desired output vector which is expressed in terms
of the desired I and Q waveforms:

yd =

(
yd I

ydQ

)
=

(
ad cos ϕd
ad sin ϕd

)
, (7)

where ad and ϕd are respectively the desired output ampli-
tude and phase trajectories in the flat-topped region (colored
area in Fig. 2). We choose a smoothed amplitude trajectory
as follows,

ad (k) = a0e−(k−1)/k0 + are f
(
1 − e−(k−1)/k0

)
, (8)

1 ≤ k ≤ N,

where are f is the desired amplitude at the flat-top, and a0
and k0 are constants. A similar trajectory is defined for the
phase. The reason for selecting such smooth trajectories is
to avoid discontinuity which may result in large actuation to
obtain flatness. The limits on the input signals are excluded
from the constraints since they are inactive and can be treated
separately.

As stated in [7], the following specific linear combination
reduces the prediction error and allows Ylc to be of full rank
at every trial throughout the learning process,

Ulc = Ui −Ui−1 + γU0, (9)

and the linear combination matrix for the output would be

Ylc = Yi − Yi−1 + γY0, (10)

Proceedings of FEL2014, Basel, Switzerland THP044

FEL Technology and Hardware: Gun, RF, Lasers

ISBN 978-3-95450-133-5

825 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



where γ is a tuning factor, and where Ui and U0 are Toeplitz
matrices of ui and u0, respectively, with u0 denoting the
initial input signal. Similar definitions apply for Yi and Y0.

The explicit solution to the optimization problem (6) can
be readily calculated,

α̃∗i = (r I + YT
lcYlc )−1YT

lc (yi − yd ). (11)

Therefore, the input I and Q sequences are updated as

ui+1 = ui +Ulc α̃
∗
i , (12)

with defined bounds on the inputs.

EXPERIMENTAL RESULTS
As stated at the beginning, the control objective is to

generate flat pulses at the klystron output. The actuation and
measurement are based on I and Q waveforms, however we
are mostly interested in amplitude and phase due to their
physical meaning. Before running the ILC, the loop phase
of the RF system was calibrated and set to zero, such that I
and Q channels were approximately decoupled. Since the
klystron is nonlinear with respect to amplitude, the inputs ui
are small signals around the operating point of the klystron.
The algorithm begins with slightly exciting the input I and
Q channels by small steps uI 0 and uQ0, respectively, which
are constant over the whole pulse length.
Figure 3 shows the RF amplitude and phase waveforms

after 30 iterations compared to the initial waveforms. The
variance of the pulse over the flat-topped region is used as
a measure of flatness. Figure 4 illustrates the standard de-
viation of the amplitude and phase pulses as the iteration
advances. The iteration number “0” corresponds to the ini-
tial waveforms. The flatness has been improved by a factor
of 3 and 5 for the amplitude and phase pulse, respectively.
After around 20 iterations, the tracking error converges to
the residual error which comes from the pulse to pulse noise
through the system. The corresponding generated input
waveforms are depicted in Fig. 5. As we can see, the result-
ing input signal is different from the nominal rectangular
pulse.

SUMMARY
Formulti-bunch operation of a pulsedmode FEL, in which

several electron bunches are accelerated within an RF pulse,
it is often required that the amplitude and phase remain
constant over the pulse length so that the bunches achieve
the same energy level. For pulsed mode machines, like the
SwissFEL, where the pulse length is relatively short and no
intra-pulse digital feedback is feasible, Iterative Learning
Control is applicable to achieving the control objectives. In
this paper, we investigated a model-free ILC approach and
its application in RF pulse flattening of the klystron output.
The proposed algorithm is applicable to RF waveform con-
trol in the other parts of the system, such as the RF pulse
compressor and the Cavity pickups.
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Figure 3: The klystron output amplitude and phase wave-
forms after 30 iterations (in red). The blue signal denotes
the initial output waveforms (iteration #0).

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5
x 10−3

re
la

tiv
e 

st
d 

of
 a

m
pl

itu
de

 (∆
A

/A
)

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

Number of iterations

st
d 

of
 p

ha
se

 [d
eg

re
e]

Figure 4: The standard deviation of flat-top amplitude and
phase versus number of iterations.
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Figure 5: The input amplitude and phase waveforms gen-
erated by ILC (in red). The blue signal denotes the initial
input waveforms (iteration #0).
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