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Abstract 
In this paper we present our theoretical studies of limits 

on bunching using magnetic systems. We discuss the 
connection of this limit with plasma oscillations in 
electron beams and present simple formulae for an 
additional limit of micro-bunching amplification. 

INTRODUCTION 
Bunching and microbunching are very popular beam 

manipulation techniques. They are used (or planed to be 
used) for creating high peak current beams for X-ray 
FELs [1-4], for controlling or amplifying the shot noise in 
electron beams [5-12], or even using it for cooling of 
hadron beams [13-14].  

Majority of these applications rely on magnetic 
bunchers providing time-of-flight dependence on particle 
energy, which is usually described by the R56 coefficient 
of the transport matrix. One underlying assumption in 
many of these papers is that the bunching parameters are 
limited by kinematics of the motion, e.g. by R56 and the 
beam energy spread. For example, there is no assumed 
limit on the maximum amplification of the shot noise 
(micro-bunching) in electron beam. 

On other hand, it is known from plasma physics that in 
ballistic compression case the energy oscillates between 
the space charge and the kinetic energy of the particles. 
Specifically, it is shown in [15,16], placing an external 
point charge q into a cold plasma (an electron beam) or 
warm plasma with -2 velocity distribution [16] will 
cause oscillations of the screening charge with maximum 
value not exceed -2q. This limit does not depend on the 
value of R56 or beam energy spread. It also means that in 
such system the shot noise can not be amplified. 
Nevertheless, the micro-bunching using magnetic 
chicanes with gain exceeding unity was both predicted 
theoretically and demonstrated experimentally [5-12]. 

Hence, there are fundamental questions about the 
attainable bunching in electron beam: 
 

(a) what energy is available to compensate for the space 
charge energy acquired during the process? 

(b) what is the maximum attainable microbunching 
gain? 
 

In this paper we show that this is purely relativistic 
effect and are given a simple answer on the maxim 
amplification for micro-bunching.  

We are not considering here any dynamic issues related 
to bunching such as coherent synchrotron radiation and 
focus only on the fundamental limit. 

STANDARD APPROACH 
Standard approach used on modern theory of micro-

bunch (see for example [11]) uses the bunching and 
energy modulation factors, defined as follows: 
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to describe the microbunching process using matrix 
formalism [7]: 
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Propagation through a straight section is described as a 
simple (plasma) oscillation between the bunching and the 
energy modulation, which is a good approximation: 
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The other, and much stronger approximation, is used 
for propagating the beam through a chicane (buncher) 
with longitudinal compaction factor, R56, yielding in case 
of longitudinally cold e-beam [7]: 

Rb

1 kR56

0 1
.                 (4) 

Taking into account Gaussian energy spread, yields an 
exponential suppression factor, which is well know from 
theory of optical klystron [17,18]: 
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.            (5) 

formally limiting amplification to gmn / e . With 
high quality e-beam having / ~ 10 3 10 4 , Eq. (5) 
predicts a possibility if very high microbunching gain. 
Hence, standards treatment assumes that the bunching 
amplification in a chicane is determined by the values of 
R56 and is limited by the relative energy spread in the 
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beam. We will show that there is a fundamental 
limitation, which require reconsidering the use of Eqs. (4) 
and (5). 

A SIMPLE CHICANE MODEL 
Let’s simplify the buncher into a chicane with short 

magnets, as illustrated in Fig.1. In this case interaction 
between particles and the bunching occurs in the legs of 
the chicane where their trajectories are straight. The later 
allows to simplify the model and to get an analytical 
expression for limits of attainable compression.  

 
Figure 1: A simplified schematic of a chicane buncher 
with short dipole magnets, R56 L 2 , where L  is the 
length of each leg of the chicane. Some distances, sizes 
and angles are exaggerated for visibility: for example, in 
practice 1, z L . 
 

Let’s also choose magnets with translation symmetry in 
x-direction whose the magnetic field can be represented 
by a simple one-component vector potential (see Fig. 2): 

Ax (x,0, z)

Ao; 0 z L

Ao; L l z 2L l

0; z 0, z 2L l

L z L l

; Ao

poc
e

sin ;
 (6) 

where we took into account that electron has negative 
charge e . For the rest of the paper we are interested in 
plane trajectories and, unless specified otherwise, we 
assume y=0. Since the vector potential (and the 
Hamiltonian) does not depend on x, in the absence of 
other forces the x component of the canonical momentum 
is an invariant. It gives us a change of the horizontal 
momenta when electron passes each dipole  

Px px

e
c

Ax inv;

px (0 ) px (0 ) eAo

c
po sin ; 0 L

px (2L l ) px (2L l ) po sin .

  (7) 

Our model uses a very short kicks and drifts whose  
length much longer than the distance between charges. 
Hence, we neglect the interaction of the charges at the 
corners of the trajectory. We intentionally the conse-

rvation law (7) at the boundaries of the vector potential 
dependence, with 0 L , to identify the change 
imposed by the dipole magnet, and to separate it from the 
EM fields induced by beam itself. Specifically, Eq. (7) 
states, that the change of the horizontal momentum by a 
dipole does not depend neither on particle’s energy nor its 
horizontal position.  

 

 
Figure 2: Sketch of beam trajectory and horizontal 
component of the vector potential of a simplified chicane.  
 

We are using simple energy conservation law for 
deriving our limit. Naturally, we use the fact that 
magnetic field does not changes neither energy of the 
particle not the energy of the beam. It also applies to the 
total particle momentum. It means that changes of the 
horizontal momentum will cause corresponding change in 
the z-component of the momentum:  

pz p2 p2
x

.                    (8) 

Quite naturally, we focus on a second leg of chicane, 
where the bunch becomes shorter and the beam-induced 
field is increased. 

CM ENERGY 
To illustrate the method, we start from a simple model 

of two identical charged particles (electrons) interacting 
with each other. The idea is to find how close particles 
can approach each other (e.g. a minimum z) with a given 
energy deviation ). In other words, when “space charge” 
stops “the bunching”? 

The simplest way of finding this is use the center of 
mass system where the total momentum of two particles 
is zero and they approaching each other: 

1.2 c cmc; c cmc2 .  (9) 

Then the total kinetic energy  

Ek 2 c mc2 2 c 1 mc2            (10) 

can be transferred into the potential energy, when 
electrons approach each other to the distance in c.m. 
frame of: 
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and stop. Here we neglect initial electrostatic energy 
assuming rf ri

. The exact solution is 

1
rf

2 c 1
re

1
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re

2 c 1 re / ri

. 

We note that since we are considering momentum along 
z-axis, this distance is compressed by factor o. 

Let’s start from the case of ballistic compression, when 
the in c.m. two electrons have equal and opposite 
momenta along z-axis. Generally, their motion in c.m. is 
non-relativistic, but here we will use exact notations in 
order not to miss possible high order effects. In the lab 
frame boosted along the momenta of the electrons with 

(1 2 ) 1/2 we have: 

p1,2 o ( c )mc; E1,2 o (1 c )mc2;

o c; c;
2
o

2
c
2 2.

(12) 

Hence, the total energy available for “bunching” is  

Ek 21 1 2 / 2

1 2 / 2
mc2      (13) 

which for small relative energy deviations 1, typical 
for example in microbunching, becomes: 

Ek

2

2 mc2 .       (14) 

We note that for relativistic beams, which are of interest 
for this paper, 1 1, e.g. for ~10-3 we would have 
only about quarter of eV of kinetic energy per electron 
available for bunching. When the bunching is completed 
both electrons stop in the c.m. frame, and their energies in 
the lab-frame become equal:  

p1,2 mc; E1,2 mc2; 0.           (15) 

The “beam” of two electrons then looses some energy, 
which can be calculated by subtracting Eq. (15) from Eq. 
(12): 

E 2mc2
c 1 ,            (16) 

which is naturally equal to the energy of electrostatic field 
(potential energy) of electrons, Eq. (11), boosted into the 
lab-frame – hence the factor . Thus, as expected the total 
energy of the system is conserved. 

Let’s now consider how the chicane changes this 
situation. The processes in the both legs are similar to a 
degree, but bunching of interest is happening in the 
second leg where particles come closer in both the 
transverse and longitudinal directions. As we discussed in 
previous section, the translation invariance in x direction 
preserves the x-component of the Canonical momentum: 

Px px

e
c

Ax (z) 

Let’s start from the same initial conditions as in Eq. (12) 
and propagate particles through first dipole to get (using 
Eq. (8)): 
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   (17) 

with energies unchanged. The c.m. energy of the system 
is easiest to calculate using standard 4D product to the 
systems 4-momentum [19]: 

Ec.m.
2 c2 pi p

i p1 p2
2 2 mc2 2

2c2 p1 p2;

c2 p1 p2 E1E2 c2 p1 p2,
(18) 

where we used know 4D product [19] p1
2 p2

2 m2c2 . 
Using Eqs. (12) and (17), 
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yields final 
 

E1E2 c2 p1 p2

omc2 2 1 2 ao
2

o
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2 2
4 2 ;

Ec.m. mc2 2 2 o
2 1 2 ao

2
o
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(19)  

where we used  and introduced dimensionless vector 
potential (see (6)): 

ao

eAo

omc2 o sin  .               (20) 
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Expanding (19) with 
o 1,  2 1 to the leading order 

we obtain: 
Ec.m.

mc2 2 2 1 2tg2 .     (21) 

with the kinetic energy available for the bunching of 

Ek

mc2

Ec.m.

mc2 2 2 1 2tg2

           
(22) 

For ballistic bunching with 0 we get already known 
result (14) Ek mc2 22 . In a chicane it is amplified by a 
factor of 1 2tg2 ~ 1 22 . It is well known in 
accelerator theory is that factor K= tg  is a measure of 
the relativity of the transverse motion: 

px

mc
sin ~ . 

For ultra-relativistic particles K-factor can be large even 
for modest bending angles. Hence, using a buncher with 
K 1 will boost by (1+K2) -fold the energy 
available to compensate the space charge potential energy 
accrued during the bunching.  

Repeating similar calculations for an ensemble of 
particles gives an expected result:  

Ek 1 2
n
2

n 1

N

mc2 ,               (23) 

where n is a relative energy deviation of nth particle. 
Thus, the available kinetic energy available in an 
ensemble of particles is also amplified by the same factor.  

DISCUSIIONS AND CONCLUSIONS 
From analogy with plasma oscillation during ballistic 

transport (where microbunching gain of shot noise can 
not exceed unity), one should expect that a buncher could 
provide a shot noise gain ~ K. Qualitatively this can be 
concluded from following observations:  
(a) in case of ballistic motion  after a half of a plasma 

oscillation any unshielded electric charge will be 
surrounded by a cloud of electron with about twice 
the external charge with the cloud size defined by 
Debye radius [15,16]. The potential energy of such 
cloud is naturally proportional to the square of its 
charge. At this moment all kinetic energy is 
exhausted and electrons starting moving in opposite 
direction. In terms of the bunching factor, it is the 
same a gain not exceeding unity; 

(b) since the potential energy if a charge collected in a 
given pattern is proportional to the square of its 
value, means that its maximum value is proportional 
to the square root of the available kinetic energy; 

(c) since the chicane amplifies the available kinetic 
energy (K2+1) fold when compared with the ballistic 

motion, the charge which can be collected in the 
similar pattern could be K 2 1 ~ K -fold larger than 
in a case of ballistic compression.  

 
Hence, the conservation of the energy gives us a very 

straightforward way of limiting micro-bunching gain in a 
single chicane. First, we should notice that in the drift 
section the bunching is oscillating and “maximum gain” 
is simply equal 1. In the chicane, the available kinetic 
energy is amplified and hence the microbunching gain 
can exceed unity. Since the potential energy is 
proportional to the square of the bunching factor, the 
maximum micro-bunching gain (per chicane) must be 
limited by:  

gmax 1 2 ~ ,                (24) 

We want to underline that this boost has pure 
relativistic nature and depends on the product of the 
Lorentz factor and the bending angle, but not on the value 
to R56.  

Overall, Eq. (24) represents an additional, frequently 
overlooked, limit on micro-bunching amplification. 
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