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Abstract

Accelerator beam dynamics design depends heavily on

the use of control parameter optimization to achieve the best

performance. In this paper, we report on electron beam dy-

namics optimization of a model photoinjector using a new

unified differential evolution algorithm. We present the new

unified differential evolution algorithm and benchmark its

performance using several test examples. We also discuss

the application of the algorithm in the multi-objective opti-

mization of the photoinjector.

INTRODUCTION

The photoinjector is a key component in the accelerator

beam delivery system of next generation light sources, gen-

erating a high brightness electron beam into the accelera-

tor. The goal of photoinjector beam dynamics design is to

achieve a high peak current while maintaining low trans-

verse emittances at the same time. This requires optimiz-

ing a number of physical control parameters such as accel-

erating RF cavity amplitudes and phases, focusing solenoid

strengths and locations, and the initial distribution of the

electron beam. In previous studies, multi-objective opti-

mization based on genetic algorithms has been used in the

photoinjector beam dynamics optimization [1–3]. In this

paper, we apply a new unified differential evolution algo-

rithm for multi-objective beam dynamics optimization.

The differential evolution algorithm is a relatively new

method in evolutionary algorithms [4]. It is a simple

but powerful population-based, stochastic, direct-search

algorithm with self-adaptive step size to generate next-

generation offspring for global optimization. In a number

of comparison studies, it has been shown to be efficient in

comparison to simulated annealing method, controlled ran-

dom search, evolutionary programming, and genetic algo-

rithms [4–6]. However, the standard differential evolution

algorithm includes multiple strategies during the mutation

stage. This could complicate the use of the algorithm. In

this paper, we have adopted a unified differential algorithm

recently proposed by the authors [7] in a newly developed

variable population multi-objective differential evolution al-

gorithm [8] in a photoinjector beam dynamics optimization.

STANDARD DIFFERENTIAL EVOLUTION

In the standard differential evolution algorithm, a popu-

lation with size N P in control parameter space is randomly

generated at the beginning. This population defines the first
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generation of the control parameters. After this initializa-

tion, the differential evolution algorithm consists of three

stages to produce a new generation: mutation, crossover,

and selection. Dur the mutation stage, for each parameter

vector ~xi,G , i = 0,1,2, · · · ,N P − 1 in a population of size

N P at generation G, a perturbed vector~vi is generated using

one of the following mutation strategies [4, 9]:

DE/rand/1 : ~vi = ~xr1
+ Fxc (~xr2

− ~xr3
) (1)

DE/rand/2 : ~vi = ~xr1
+ Fxc (~xr2

− ~xr3
)

+Fxc (~xr4
− ~xr5

) (2)

DE/best/1 : ~vi = ~xb + Fxc (~xr1
− ~xr2

) (3)

DE/best/2 : ~vi = ~xb + Fxc (~xr1
− ~xr2

)

+Fxc (~xr3
− ~xr4

) (4)

DE/current-to-best/1 : ~vi = ~xi + Fcr (~xb − ~xi )

+Fxc (~xr1
− ~xr2

) (5)

DE/current-to-best/2 : ~vi = ~xi + Fcr (~xb − ~xi )

+Fxc (~xr1
− ~xr2

) + Fxc (~xr3
− ~xr4

) (6)

DE/current-to-rand/1 : ~vi = ~xi + Fcr (~xr1
− ~xi )

+Fxc (~xr2
− ~xr3

) (7)

DE/current-to-rand/2 : ~vi = ~xi + Fcr (~xr1
− ~xi )

+Fxc (~xr2
− ~xr3

) + Fxc (~xr4
− ~xr5

) (8)

DE/rand-to-best/1 : ~vi = ~xr1
+ Fcr (~xb − ~xi )

+Fxc (~xr2
− ~xr3

) (9)

DE/rand-to-best/2 : ~vi = ~xr1
+ Fcr (~xb − ~xi )

+Fxc (~xr2
− ~xr3

) + Fxc (~xr4
− ~xr5

) (10)

where the integers r1, r2, r3, r4 and r5 are chosen randomly

from the interval [1,N P] and are different from the current

index i, Fxc is a real scaling factor that controls the am-

plification of the differential variation, ~xb is the best solu-

tion among the N P population members at the generation

G, and Fcr is a weight for the combination between the

original target vector and the best parent vector or the ran-

dom parent vector. In order to increase the diversity of the

parameter vectors, crossover between the parameter vector

~xi,G and the perturbed vector ~vi is introduced with an exter-

nally supplied crossover probability Cr to generate a new

trial vector Ui,G+1, i = 0,1,2, · · · ,N P − 1. For a D dimen-

sional control parameter space, the new trial parameter vec-

tor Ui,G+1, i = 0,1,2, · · · ,N P − 1 is generated using the

following rule:

~Ui = (ui1,ui2, · · · ,uiD ) (11)

ui j =

{

vi j , if rand j ≤ CR or j = mbri
xi j , otherwise

(12)

where rand j is a randomly chosen real number in the in-

terval [0,1], and the index mbri is a randomly chosen in-
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teger in the range [1,D] to ensure that the new trial vector

contains at least one parameter from the perturbed vector.

During the selection stage, the new trial solution Ui,G+1 is

checked against the original parent xi,G . If the new trial so-

lution produces a better objective function value, it will be

put into the next generation (G + 1) population. Otherwise,

the original parent is kept in the next generation population.

The above procedure is repeated for all N P parents to pop-

ulate a new generation. This completes one new generation.

Many generations are used to attain the final global optimal

solution.

THE UNIFIED DIFFERENTIAL

EVOLUTION ALGORITHM

The presence of multiple mutation strategies can compli-

cate the use of the differential evolution algorithm. A new

single mutation expression that can unify most conventional

mutation strategies used by the differential evolution algo-

rithm was proposed by the authors [7]. This single unified

mutation expression can be written as:

~vi = ~xi + F1(~xb − ~xi ) + F2(~xr1
− ~xi ) +

F3(~xr2
− ~xr3

) + F4(~xr4
− ~xr5

) (13)

Here, the second term on the right hand of the equation (13)

denotes the contribution from the best found solution in the

current generation, the third term denotes the rotationally

invariant contribution from the random solution, and the

fourth and fifth terms are the same terms as those used in the

original differential evolution algorithm to account for the

contributions from the difference of parent solutions. The

four parameters F1, F2, F3 and F4 are the weights from each

contribution. This unified mutation expression represents a

combination of exploitation (from the best found solution)

and exploration (from the random solutions) to generate a

new mutant solution.

From the above equation, one can see that for F1 = 0,

F2 = 1, and F4 = 0, this equation reduces to DE/rand/1; for

F1 = 0, F2 = 1, and F3 = F4, it reduces to DE/rand/2; for

F1 = 1, F2 = 0, and F4 = 0, it reduces to DE/best/1; for

F1 = 1, F2 = 0, and F3 = F4, it reduces to DE/best/2; for

F2 = 0 and F4 = 0, it reduces to DE/current-to-best/1; for

F2 = 0 and F3 = F4, it reduces to DE/current-to-best/2; for

F1 = 0, and F4 = 0, it reduces to DE/current-to-rand/1; for

F1 = 0, and F3 = F4, it reduces to DE/current-to-rand/2;

for F2 = 1, and F4 = 0, it reduces to DE/rand-to-best/1;

for F2 = 1, and F3 = F4, it reduces to DE/rand-to-best/2.

Using the single equation (13), ten mutation strategies in

the standard differential evolution algorithm can be written

as a single mutation expression. Meanwhile, this new ex-

pression provides an opportunity to explore more broadly

the space of mutation operators. By using a different set

of parameters F1,F2,F3,F4, a new mutation strategy can be

achieved. For example, from our experience, we found that

using F1 = 0.25, F2 = 0.25, F3 = 0.2, F4 = 0.2, and

CR = 0.8 in the uDE can give better performance in some

test studies than the conventional mutation strategy [4, 9]

(shown in the following section). If these parameters can be

adaptively adjusted during the optimization evolution, then

multiple mutation strategies and their combinations can be

used during different stages of optimization. Thus, the uni-

fied mutation expression has the virtue of mathematical sim-

plicity and also provides the user with flexibility for broader

exploration of different mutation strategies.

BENCHMARK EXAMPLES

One of the exploratory unified differential evolution al-

gorithms (uDE) (F1 = 0.25,F2 = 0.25,F3 = 0.2,F4 =

0.2,CR = 0.8) is tested with several numerical test func-

tions together with the conventional differential evolution

algorithm. These test functions are [10, 11]:

(1) Sphere function

Fsph(~x) =

N
∑

i=1

x2
i ; −100 ≤ xi ≤ 100;

(2) Schwefel’s problem 1.2

Fsch2(~x) =

N
∑

j=1

*.
,

j
∑

i=1

xi
+/
-

2

; −100 ≤ xi ≤ 100;

(3) Quartic function with noise

Fqrt(~x) =

N
∑

i=1

ix4
i + rand[0,1); −1.28 ≤ xi ≤ 1.28;

(4) Ackley’s function

Fack (~x) = 20 + exp(1) − 20 exp
*..
,
−0.2

√

√

√

1

N

N
∑

i=1

x2
i

+//
-

− exp *
,

1

N

N
∑

i=1

cos(2πxi )+
-

; −32 ≤ xi ≤ 32;

The sphere function is a continuous, unimodal and sep-

arable function. The Schewefel’s problem 1.2 is a non-

separable unimodal function. The noisy quartic function

is a unimodal function with random noise in the objective

value. The Ackely’s function is a multimodal non-separable

problem and has many local minima and a narrow global

minimum.

In Figs. 1-4, we show the evolution of the error relative to

the true global minimum objective function value of these

test functions for the algorithms with dimension N = 50.

At each generation, the objective function value has been

averaged over 25 random seeds. It is seen that the unified

differential algorithm performs quite well in these test ex-

amples quickly converging to the true minimum.

A PHOTOINJECTOR BEAM DYNAMICS

OPTIMIZATION

We applied the above exploratory unified differential evo-

lution algorithm together with a particle-in-cell code [12]
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Figure 1: Evolution of the average error in the test sphere

function.
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Figure 2: Evolution of the average error in the test Schwe-

fel’s problem 1.2 function.
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Figure 3: Evolution of the average error in the noisy quartic

function.
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Figure 4: Evolution of the average error in the Ackley func-

tion.

in a photoinjector beam dynamics optimization. This uni-

fied differential algorithm was implemented in the recently

developed multi-objective differential evolution algorithm

based on the variable population and external storage for

beam dynamics optimization [8]. A schematic plot of the

photoinjector is shown in Fig. 5. It consists of a 187 MHz

Figure 5: A schematic plot of a photoinjector for multi-

objective optimization application.

RF gun [13, 14], a solenoid, and two 1.3 GHz boosting

cavities. The objective functions to be optimized are the

transverse rms emittances and the longitudinal rms bunch

length that is directly related to the peak current of the beam.

There are 9 control parameters that are used in the optimiza-

tion. Those are the initial electron beam transverse size and

bunch length, strength of the solenoid field, starting loca-

tion of the boosting RF cavity, and amplitudes and phases

of the two RF cavities. The maximum amplitude of the RF

field inside the gun is set as about 38 MV/m. The charge for

the electron beam is 300 pC. Some optimal solutions of the

rms bunch length and the transverse emittance are shown

in Fig. 6. There is a sharp change of the rms bunch length

around rms emittance 1.4 mm-mrad. This sharp reduction

of the rms bunch length is due to the over compression of

the electron beam longitudinally. In the photoinjector de-

sign, one normally tries to keep the final transverse emit-

tance below 1 mm-mrad. Here, we choose a working point

with transverse emittance around 0.9 mm-mrad. Figure 7

shows the rms projected emittance evolution inside the in-

jector. At the end of the second boosting RF cavity, the

transverse rms emittance reaches 0.9 mm-mrad, but still de-

creases. The kinetic energy of the beam at the exit of the

second cavity is about 13 MeV with a final peak current of

20 A.

SUMMARY AND DISCUSSION

In this paper, we used a new unified differential evolution

algorithm in the multi-objective photoinjector beam dynam-

ics optimization. The unified differential evolution algo-

rithm has the virtue of mathematical simplicity and the ca-

pability to explore a broader mutation strategy space. Using

a new exploratory mutation strategy, we have done beam dy-

namics optimization for a photoinjector consisting of a low

RF frequency gun, a solenoid and two boosting cavity. Our

preliminary optimization results suggest that below 1 um

transverse emittance is achievable out of this injector. More

detailed study is needed to understand the space-charge
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Figure 6: Optimal rms bunch length and transverse emit-

tance solutions of the photoinjector beam dynamics opti-

mization.
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Figure 7: Transverse rms projected emittance evolution in-

side the photoinjector.

emittance compensation, the jump in the Pareto front, and

the extension to include more RF accelerating cavities.
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