Author: Rublack, T.
Paper Title Page
THP007 Recent Electron Beam Optimization at PITZ 689
 
  • G. Vashchenko, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, G. Kourkafas, M. Krasilnikov, D. Malyutin, D. Melkumyan, A. Oppelt, M. Otevřel, T. Rublack, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • G. Pathak
    Uni HH, Hamburg, Germany
  • D. Richter
    HZB, Berlin, Germany
 
  High brightness electron sources for linac based freee-lectron lasers operating at short wavelength such as FLASH and the European XFEL are characterized and optimized at the Photo Injector Test Facility at DESY, Zeuthen site (PITZ). In the last few years PITZ mainly was used to condition RF guns for their later operation at FLASH and the European XFEL. Only limited time could be spent for beam characterization. However, recently we have performed emittance measurements and optimization for a reduced gun accelerating gradient which is similar to the usual operation conditions at FLASH. The results of these measurements are presented in this paper.  
 
THP060 Design of a Spatio-temporal 3-D Ellipsoidal Photo Cathode Laser System for the High Brightness Photo Injector PITZ 878
 
  • T. Rublack, J.D. Good, M. Khojoyan, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A.V. Andrianov, E. Gacheva, E. Khazanov, S. Mironov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • I. Hartl, S. Schreiber
    DESY, Hamburg, Germany
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: German Federal Ministry of education and Research, project 05K10CHE “Development and experimental test of a laser system for producing quasi 3D ellipsoidal laser pulses” and RFBR grant 13-02-91323.
Minimized emittance is crucial for improved operation of linac-based free electron lasers. Simulations have thus shown 3-D ellipsoidal photocathode laser pulses are superior to the standard Gaussian or cylindrical laser pulses in this manner. Therefore, in collaboration with the Joint Institute of Nuclear Research (JINR, Dubna, Russia) and the Photo Injector Test facility at DESY, Zeuthen (PITZ), a prototype system capable of producing spatio-temporal 3-D ellipsoidal pulses has been constructed at the Institute of Applied Physics (IAP, Nizhny Novgorod, Russia). The system consists of a dual-output, 1030 nm fiber laser coupled with disc amplifiers, a scheme based on Spatial Light Modulators for spatial and temporal pulse shaping of the primary output, a cross-correlator set up utilizing the secondary output to characterize the primary output, and finally frequency conversion to the UV. A preliminary, temporal ellipsoidal shaped IR pulse has been observed and measured so far at IAP RAS. As of writing, improvements and refinements of the system are ongoing and it is expected to replicate the finalized prototype at PITZ soon.