Author: Roensch-Schulenburg, J.     [Rönsch-Schulenburg, J.]
Paper Title Page
MOP059 Beam Dynamic Simulations for Single Spike Radiation with Short-Pulse Injector Laser at FLASH 173
 
  • M. Rehders
    University of Hamburg, Hamburg, Germany
  • J. Rönsch-Schulenburg
    CFEL, Hamburg, Germany
  • J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Schreiber
    DESY, Hamburg, Germany
 
  Funding: The project has been supported by the Federal Ministry of Education and Research of Germany (BMBF) under contract No. 05K10GU2 and FSP301
This paper discusses the generation of single spike SASE pulses at soft x-ray wavelength at the free-electron laser FLASH by using very short electron bunches of only a few micrometer bunch length. In order to achieve these extremely short bunch lengths, very low bunch charges (in the order of 20 pC) and short electron bunches exiting the photo-injector are required. For this, a new short-pulse injector laser with adjustable rms pulse duration in the range of 0.7 ps to 1.6 ps and bunch charges up to 200 pC was installed, extending the electron beam parameter range before bunch compression in magnetic chicanes. Beam dynamic studies have been performed to optimize the injection and compression of low-charge electron bunches by controlling the effect of coherent synchrotron radiation and space-charge induced bunch lengthening and emittance growth. Optimization includes the pulse parameters of the injector laser. The simulation codes ASTRA, CSRtrack and Genesis 1.3 were employed.
 
 
MOP060 Demonstration of SASE Suppression Through a Seeded Microbunching Instability 177
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, E. Hass, K. Honkavaara, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school 1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brilliance electron bunches needed for the operation of free-electron lasers. In this contribution, we demonstrate the application of a laser-induced microbunching instability to selectively suppress the SASE process. A significant decrease of photon pulse energies was observed at the free-electron laser FLASH in coincidence with overlap of 800 nm laser pulses and electron bunches within a modulator located approximately 40 meters upstream of the undulators. We discuss the underlying mechanisms based on longitudinal space charge amplification [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
 
TUB04 Operation of FLASH with Short SASE-FEL Radiation Pulses 342
 
  • J. Rönsch-Schulenburg, E. Hass, N.M. Lockmann, T. Plath, M. Rehders, J. Roßbach
    Uni HH, Hamburg, Germany
  • G. Brenner, S. Dziarzhytski, T. Golz, H. Schlarb, B. Schmidt, E. Schneidmiller, S. Schreiber, B. Steffen, N. Stojanovic, S. Wunderlich, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Funding: The project has been supported by the Federal Ministry of Education and Research of Germany (BMBF) under contract No. 05K10GU2 and FSP301
This paper describes the experimental activity on the generation of very short FEL pulses in the soft x-ray range in the SASE-mode at the high-gain free-electron laser FLASH [1, 2]. The key element, a photo-injector laser which is able to generate laser pulses of about 2 ps FWHM has been optimized and commissioned. It allows the generation of shorter bunches with low bunch charge (of up to 200 pC) directly at the photo-cathode. Initially shorter injector laser pulses and thus shorter bunches eases the required bunch compression factor for short pulses below 10 fs duration which makes operation of the electron beam formation system to be more robust with respect to jitters and collective effects. As a result, overall stability of SASE FEL performance is improved. In the optimal case single-spike operation can be achieved. In this paper the experimental results on production of short electron bunches and the SASE performance using the new injector laser will be shown and the measured electron bunch and FEL radiation properties are discussed. In addition, optimizations of bunch diagnostics for low charge and short bunches are discussed.
 
slides icon Slides TUB04 [1.201 MB]  
 
THP076 Measurements of the Timing Stability at the FLASH1 Seeding Experiment 913
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach, M. Wieland
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, H. Dachraoui, N. Ekanayake, B. Faatz, M. Felber, K. Honkavaara, T. Laarmann, J.M. Mueller, H. Schlarb, S. Schreiber, S. Schulz
    DESY, Hamburg, Germany
  • G. Angelova Hamberg
    Uppsala University, Uppsala, Sweden
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
  • P.M. Salen, P. van der Meulen
    FYSIKUM, AlbaNova, Stockholm University, Stockholm, Sweden
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4 and 05K13PE3 and the German Research Foundation programme graduate school 1355.
For seeding of a free-electron laser, the spatial and temporal overlap of the seed laser pulse and the electron bunch in the modulator is critical. To establish the temporal overlap, the time difference between pulses from the seed laser and spontaneous undulator radiation is reduced to a few pico-seconds with a combination of a photomultiplier tube and a streak camera. Finally, for the precise overlap the impact of the seed laser pulses on the electron bunches is observed. In this contribution, we describe the current experimental setup, discuss the techniques applied to establish the temporal overlap and analyze its stability.