Author: Michel, P.
Paper Title Page
WEB04 The New IR FEL Facility at the Fritz-Haber-Institut in Berlin 629
 
  • W. Schöllkopf, W. Erlebach, S. Gewinner, H. Junkes, A. Liedke, G. Meijer, A. Paarmann, G. von Helden
    FHI, Berlin, Germany
  • H. Bluem, D. Dowell, R. Lange, J. Rathke, A.M.M. Todd, L.M. Young
    AES, Medford, New York, USA
  • S.C. Gottschalk
    STI, Washington, USA
  • U. Lehnert, P. Michel, W. Seidel, R. Wünsch
    HZDR, Dresden, Germany
 
  A mid-infrared oscillator FEL has been commissioned at the Fritz-Haber-Institut. The accelerator consists of a thermionic gridded gun, a subharmonic buncher and two S-band standing-wave copper structures [1,2]. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (<50 keV-ps) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 μs. Regular user operation started in Nov. 2013 with 6 user stations. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 μm. We will describe the FEL design and its performance as determined by IR power, bandwidth, and micro-pulse length measurements. Further, an overview of the new FHI FEL facility and first user results will be given. The latter include, for instance, spectroscopy of bio-molecules (peptides and small proteins) conformer selected or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase.
[1] W. Schöllkopf et al., MOOB01, Proc. FEL 2012.
[2] W. Schöllkopf et al., WEPSO62, Proc. FEL 2013.
 
slides icon Slides WEB04 [12.785 MB]  
 
THP061 Commissioning of an Improved Superconducting RF Photo Injector at ELBE 881
 
  • J. Teichert, A. Arnold, M. Freitag, P.N. Lu, P. Michel, P. Murcek, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • P. Kneisel
    JLab, Newport News, Virginia, USA
  • I. Will
    MBI, Berlin, Germany
 
  In order to produce high-brightness electron beams in a superconducting RF photo injector, the most important point is to reach a high acceleration field in the cavity. For this reason two new 3.5-cell niobium cavities were fabricated, chemically treated and cleaned in collaboration with Jlab. The first of these two cavities was shipped to HZDR and assembled in a new cryomodule. This new gun (SRF Gun II) was installed in the ELBE accelerator hall in May 2014 and replaces the previous SRF Gun I. Beside the new cavity the ELBE SRF gun II differs from the previous gun by the integration of a superconducting solenoid. The paper presents the results of the first test run with a Cu photocathode.