Author: Mao, X.S.
Paper Title Page
MOP046 Undulator Radiation Damage Experience at LCLS 127
 
  • H.-D. Nuhn, R.C. Field, Yu.I. Levashov, X.S. Mao, M. Santana-Leitner, J.J. Welch, Z.R. Wolf
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515
The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checked for magnetic (50 ppm, rms) and mechanic (about 0.25 μm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.