Author: Mahieu, B.
Paper Title Page
MOP073
Chirped Pulse Amplification in a Seeded Free-electron Laser: Design of a Test Experiment at FERMI  
 
  • G. De Ninno, E. Allaria, I. Cudin, M.B. Danailov, A.A. Demidovich, S. Di Mitri, E. Ferrari, D. Gauthier, L. Giannessi, N. Mahne, G. Penco, L. Raimondi, P. Rebernik Ribič, C. Spezzani, L. Sturari, C. Svetina, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • H. Dacasa, B. Mahieu, P. Zeitoun
    LOA, Palaiseau, France
  • M. Fajardo
    IPFN, Lisbon, Portugal
  • E. Ferrari
    Università degli Studi di Trieste, Trieste, Italy
  • F. Frassetto, L. P. Poletto
    LUXOR, Padova, Italy
  • D. Gauthier
    University of Nova Gorica, Nova Gorica, Slovenia
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  In solid-state lasers, frequency chirping is employed to stretch a short pulse prior to amplification, mitigating the problems related to high power in the active medium. After amplification, the chirp is compensated in order to recover short pulse duration and, hence, high peak power. Chirped pulse amplification (CPA) in seeded FEL’s relies on a similar principle: the seed pulse is stretched in time before interacting with the electron beam. This permits one to create bunching on a larger number of electrons, and to (approximately) linearly increase the output energy of the generated FEL pulse. In ideal conditions, the chirp carried by the phase of the seed pulse is transmitted to the output phase of the FEL pulse. Chirp compensation after the last undulator allows production of a short (ideally Fourier-transformed) pulse and, therefore, a larger peak power with respect to what obtained, for the same conditions, in standard (i.e., no-chirp-on-the-seed) operation mode. In this paper, we present the preparatory studies (i.e., numerical simulations and compressor design), which have been carried out at FERMI, in view of performing the first test experiment of CPA on a seeded FEL.  
 
THA02 Experimental Characterization of FEL Polarization Control with Cross Polarized Undulators 644
 
  • E. Ferrari, E. Allaria, G. De Ninno, B. Diviacco, D. Gauthier, L. Giannessi, G. Penco, C. Spezzani
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • J. Buck, M. Ilchen
    XFEL. EU, Hamburg, Germany
  • G. De Ninno, D. Gauthier
    University of Nova Gorica, Nova Gorica, Slovenia
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • Z. Huang, A.A. Lutman
    SLAC, Menlo Park, California, USA
  • G. Lambert, B. Mahieu
    LOA, Palaiseau, France
  • J. Viefhaus
    DESY, Hamburg, Germany
 
  Polarization control of the coherent radiation is becoming an important feature of recent and future short wavelength free electron laser facilities. While polarization tuning can be achieved taking advantage of specially designed undulators, a scheme based on two consecutive undulators emitting orthogonally polarized fields has also been proposed. Developed initially in synchrotron radiation sources, crossed polarized undulator schemes could benefit from the coherent emission that characterize FELs. In this work we report the first detailed experimental characterization of the polarization properties of an FEL operated with crossed polarized undulators in the Soft-X-Rays. Aspects concerning the average degree of polarization and the shot to shot stability are investigated together with a comparison of the performance of various schemes to control and switch the polarization  
slides icon Slides THA02 [5.383 MB]