Author: Dowell, D.
Paper Title Page
WEB04 The New IR FEL Facility at the Fritz-Haber-Institut in Berlin 629
 
  • W. Schöllkopf, W. Erlebach, S. Gewinner, H. Junkes, A. Liedke, G. Meijer, A. Paarmann, G. von Helden
    FHI, Berlin, Germany
  • H. Bluem, D. Dowell, R. Lange, J. Rathke, A.M.M. Todd, L.M. Young
    AES, Medford, New York, USA
  • S.C. Gottschalk
    STI, Washington, USA
  • U. Lehnert, P. Michel, W. Seidel, R. Wünsch
    HZDR, Dresden, Germany
 
  A mid-infrared oscillator FEL has been commissioned at the Fritz-Haber-Institut. The accelerator consists of a thermionic gridded gun, a subharmonic buncher and two S-band standing-wave copper structures [1,2]. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (<50 keV-ps) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 μs. Regular user operation started in Nov. 2013 with 6 user stations. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 μm. We will describe the FEL design and its performance as determined by IR power, bandwidth, and micro-pulse length measurements. Further, an overview of the new FHI FEL facility and first user results will be given. The latter include, for instance, spectroscopy of bio-molecules (peptides and small proteins) conformer selected or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase.
[1] W. Schöllkopf et al., MOOB01, Proc. FEL 2012.
[2] W. Schöllkopf et al., WEPSO62, Proc. FEL 2013.
 
slides icon Slides WEB04 [12.785 MB]  
 
THP042 The LCLS-II Injector Design 815
 
  • J.F. Schmerge, A. Brachmann, D. Dowell, A.R. Fry, R.K. Li, Z. Li, T.O. Raubenheimer, T. Vecchione, F. Zhou
    SLAC, Menlo Park, California, USA
  • A.C. Bartnik, I.V. Bazarov, B.M. Dunham, C.M. Gulliford, C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Filippetto, R. Huang, C. F. Papadopoulos, G.J. Portmann, J. Qiang, F. Sannibale, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • A. Lunin, N. Solyak, A. Vivoli
    Fermilab, Batavia, Illinois, USA
 
  The new LCLS-II project will construct a 4 GeV continuous wave (CW) superconducting linear accelerator to simultaneously feed two undulators which will cover the spectral ranges 0.2-1.2 keV and 1-5 keV, respectively. The injector must provide up to 300 pC/bunch with a normalized emittance < 0.6 mm and peak current > 30 A at up to 1 MHz repetition rate. An electron gun with the required brightness at such high repetition rate has not yet been demonstrated. However, several different options have been explored with results that meet or exceed the performance requirements of LCLS-II. The available technologies for high repetition-rate guns, and the need to keep dark current within acceptable values, limit the accelerating gradient in the electron gun. We propose a CW normal conducting low frequency RF gun for the electron source due to a combination of the simplicity of operation and the highest achieved gradient in a CW gun, potentially allowing for lower beam emittances. The high gradient is especially significant at the 300 pC/bunch charge where beam quality can suffer due to space charge. This paper describes the design challenges and presents our solutions for the LCLS-II injector.  
 
THP057 Longitudinal and Transverse Optimization for a High Repetition Rate Injector 864
 
  • C. F. Papadopoulos, D. Filippetto, R. Huang, G.J. Portmann, H.J. Qian, F. Sannibale, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • A.C. Bartnik, I.V. Bazarov, B.M. Dunham, C.M. Gulliford, C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Brachmann, D. Dowell, P. Emma, Z. Li, T.O. Raubenheimer, J.F. Schmerge, T. Vecchione, F. Zhou
    SLAC, Menlo Park, California, USA
  • A. Vivoli
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The injector is the low energy part of a linac, where space charge and kinematic effects may affect the electron beam quality significantly, and in the case of single pass systems determines the brightness in the downstream components. Following the increasing demand for high repetition rate user facilities, the VHF-gun, a normal conducting, high repetition rate (1 MHz) RF gun operating at 186 MHz has been constructed at LBNL within the APEX project and is under operation. In the current paper, we report on the status of the beam dynamics studies. For this, a multi-objected approach is used, where both the transverse and the longitudinal phase space quality is optimized, as quantified by the transverse emittance and the bunch length and energy spread respectively. We also report on different bunch charge operating modes.