Author: Bratman, V.L.
Paper Title Page
TUP081 Configuration and Status of the Israeli THz Free Electron Laser 553
 
  • A. Friedman, N. Balal, V.L. Bratman, E. Dyunin, Yu. Lurie, E. Magori
    Ariel University, Ariel, Israel
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
 
  Funding: This project is funded in part by Israel Ministry of Defense.
A THz FEL is being built in Ariel University. This project is a collaboration between Ariel University, and Tel Aviv University. Upon completion it is intended to become a user facility. The FEL is based on a compact photo cathode gun (60 cm) that will generate an electron beam at energies of 4.5 - 6.5 MeV. The pulses are planned to be of 300 pico Coulomb for a single pulse, and of up to 1.5 nano Coulomb for a train of pulses. The FEL is designed to emit radiation between 1 and 5 THz. It is planned to operate in the super radiance regime. The configuration of the entire system will be presented, as well as theoretical and numerical results for the anticipated output of the FEL, which is in excess of 150 KW instantaneous power. The bunching of the electron bean will be achieved by mixing two laser beams on the photo-cathode. The compression of the beam will be achieved be introducing an energy chierp to the beam and passing it through a helical chicane. We plan on compressing the single pulse to less than 150 femto seconds. The status of the project at the time of the conference will be presented.
 
poster icon Poster TUP081 [3.276 MB]  
 
TUP015 Radiation and Interaction of Layers in Quasi-plane Electron Bunches Moving in Undulators 388
 
  • N. Balal
    Ariel University, Ariel, Israel
  • V.L. Bratman
    IAP/RAS, Nizhny Novgorod, Russia
 
  The model of radiating planes (1D radiating gas) consisting of electrons that oscillate and travel with a relativistic translational velocity allows one to develop a simple general theory describing a number of important effects of radiation in a undulator for dense electron bunches formed in photoinjector accelerators. Having based on this method and taking into account both Coulomb and radiation interactions of the planes with an arbitrary density, particle velocity distribution and energy chirp we have found analytically and numerically efficiency and frequency spectrum for coherent spontaneous radiation, including conditions for generation of minimum narrow and very broadband spectra. The developed theory has been applied for estimation of a powerful terahertz radiation source with a moderate energy of electrons.