Author: Agapov, I.V.
Paper Title Page
MOP056 SASE Characteristics from Baseline European XFEL Undulators in the Tapering Regime 159
 
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
  • G. Feng, V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
 
  The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in the SASE regime. Here we demonstrate that the performance of European XFEL sources can be significantly improved without additional hardware. The procedure consists in the optimization of the undulator gap configuration for each X-ray beamline. Here we provide a comprehensive description of the X-ray photon beam properties as a function of wavelength and bunch charge. Based on nominal parameters for the electron beam, we demonstrate that undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime.  
 
MOP058 Purified SASE Undulator Configuration to Enhance the Performance of the Soft X-ray Beamline at the European XFEL 169
 
  • V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
 
  The purified SASE (pSASE) undulator configuration recently proposed at SLAC promises an increase in the output spectral density of XFELs. In this article we study a straightforward implementation of this configuration for the soft x-ray beamline at the European XFEL. A few undulator cells, resonant at a subharmonic of the FEL radiation, are used in the middle of the exponential regime to amplify the radiation, while simultaneously reducing the FEL bandwidth. Based on start-to-end simulations, we show that with the proposed configuration the spectral density in the photon energy range between 1.3 keV and 3 keV can be enhanced of an order of magnitude compared to the baseline mode of operation. This option can be implemented into the tunable-gap SASE3 baseline undulator without additional hardware, and it is complementary to the self-seeding option with grating monochromator proposed for the same undulator line, which can cover the photon energy range between about 0.26 keV and 1 keV.  
 
TUP049 Storage Ring XFEL with Longitudinal Focusing 492
 
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
 
  In present work we investigate the possibility of running a high gain FEL on a storage ring using a longitudinally focusing insertion to compress bunches passing an undulator. If integrated into a storage ring similar to PETRA III such device could potentially produce continuous ∼1ps pulses of photons in the nm range with peak pulse powers of tens of GW. Even without operating in FEL saturation mode the longitudinal focusing can provide means to increase the brightness and shorten the photon pulse length