

More than 15 years of CW SRF operation at ELBE

André Arnold on behalf of the whole ELBE team

Introduction into ELBE Electron Linear accelerator with high Brilliance and low Emittance

- Foundation: 01.01.1992 (e.V.)
- 1,200 employees including 350 scientists and 150 PhD students
- guest scientists from 50 countries
- Research Sites in Dresden, Leipzig, Freiberg, Schenefeld, Grenoble

- Foundation: 01.01.1992 (e.V.)
- 1,200 employees including 350 scientists and 150 PhD students
- guest scientists from 50 countries
- Research Sites in Dresden, Leipzig, Freiberg, Schenefeld, Grenoble

Mitglied der Helmholtz-Gemeinschaft Dr.-Ing. André Arnold | Institut für Strahlenphysik | www.hzdr.de

km to Fil

Introduction into ELBE

Electron Linear accelerator with high Brilliance and low Emittance

- electron accelerator is based on 4 superconducting
 1.3 GHz 9-cell TESLA cavities driven in CW operation
- average current ≤ 1.6 mA, beam energy ≤ 40 MeV, rep. rate ≤ 13 MHz, bunch charge ≤ 77 pC for thermionic gun and ≤ 300 pC for SRF gun (currently at 100 kHz)
- 100 m long, 100 M€ investment, ~50 FTE

"eierlegende Wollmilchsau"

Dr.-Ing. André Arnold | Institut für Strahlenphysik | www.hzdr.de

Typical beam time statistics (2018/2019)

Mid IR FEL: 5 – 45 μm, ≤ 45 W, **13 MHz, 77 pC, 1 mA**

Far IR FEL: 30 – 250 μm, ≤ 65 W, **13 MHz , 77 pC, 1 mA**

THz: 0.1 – 3 THz, ~ 4 μJ/pulse, **100 kHz, 200 pC, 20 μA**

Gamma: < 20 MeV, 10⁵ 1/s·cm², **13 MHz, 77 pC, 1 mA**

Neutrons: < 10 MeV, 10⁴ n/s·cm², **400 kHz, 77 pC, 30 μA**

Positron: 0.5-30 keV, 5·10⁶ 1/s, **1.6 MHz, 77 pC, 120 μA**

Operation statistics:

Scheduled	6084 h
Used	5777 h
Availability	95%
External users:	~70 %

24/7 – real CW SRF operation

Courtesy of P. Michel

Mitglied der Helmholtz-Gemeinschaft

Dr.-Ing. André Arnold | Institut für Strahlenphysik | www.hzdr.de

The compact ELBE cryomodule

The compact ELBE cryomodule

diagnostic for FPC

and vacuum windows

and RF waveguides

manufacturing in license by RI

CWRF power amplifiers

- 2001 2011 8kW klystron VKL7811St from CPI
- 2009 Bruker presented 1st 10 kW class AB solid state power amp. based on 28V LDMOS-FET Transistors at the SRF2009 in Berlin
- 2010 Delivery of the 1st 10 kW SSPA to HZDR for testing on beam
- 2012 today 10x 10 kW SSPA (2 per cavity), reliable and compact system with high redundancy (5 LDMOS died no impact on beam time, 2 times 4 h down time because of power supply failure)

Latest version by SigmaPhi Electronics (former Bruker)

- 15kW CW 1300MHz based on 6th gen. 50V LDMOS
- Bandwidth: ±5MHz
- Small Signal Gain: 73dB typ.
- Operating Dynamic: >30dB
- Rise / Fall Time: < 100ns
- Harm. Rejection: 40dBc min.
- Noise Figure: 6dB typ.
- Spurious: 60dBc min.

CW Issues or experiences with coupler windows

We lost in total 4 warm waveguide windows within last 18 years:

- Jan. 2001: light discharge due to bad /unknown vacuum
 -> coupler diagnostic added
- Nov. 2001: self-excitation of klystron (gain ~70dB), interlock fired but no effect -> circulator added at the klystron input
- Feb. 2009: light discharge due too sensor mal function
 -> automated sensor tests introduced
- May 2014: human error during maintenance work (RF generator connected by mistake to SSPA input directly)
 -> be aware, "Murphy" is almost everywhere!

Rexolite/Quartz WR650 (MEGA)

Seite 15

In all cases we had luck because beamline vacuum not broken and only warm coupler parts had to be repaired.

Mitglied der Helmholtz-Gemeinschaft Dr.-Ing. André Arnold | Institut für Strahlenphysik | www.hzdr.de

Diagnostics to protect the FPCs

note: left picture taken from RIs MESA module description

ELBE Coupler Interlock for 20kW CW at 1.3 GHz per cavity

- 2 PMTs, 1 for cold an 1 for warm window (H5783 or H11901 from Hamamatsu)
- 1 vacuum gauge (Pfeiffer IKR060) per FPC to monitor coupler vacuum
- 1 IR temp. sensor (Raytech) for warm window, cooled by fan-discharge duct
- 1 PT100 for inner conductor of the FPC, cold windows cooled by LN

RF is switched off whenever a certain thresholds of at least one sensor is exceed. Shutdown time <1 ms (limited by Siemens SPS, electronics and PMTs are faster).

Diagnostics to protect the FPCs

Mitglied der Helmholtz-Gemeinschaft Dr.-Ing. André Arnold | Institut für Strahlenphysik | www.hzdr.de

Resonant ring for high power CW RF component tests Concept

- traveling wave resonator based on WR650 waveguides, phase shifter for resonance tuning
- driven by a 10 kW SSPA, that is coupled into the ring via 10 dB WR650 directional coupler
- in a straight section we can introduce warm windows and FPC, 3-Stub-Tuner for matching
- Diagnostics based on temperatures, vacuum, arc discharges by PMT to switch off RF power
- max. gain w/o insertions ~20 (corr. 200 kW), with insertions ~10 \rightarrow 100 kW CW for tests

Resonant ring for high power CW RF component tests

- traveling wave resonator based on WR650 waveguides, phase shifter for resonance tuning
- driven by a 10 kW SSPA, that is coupled into the ring via 10 dB WR650 directional coupler
- in a straight section we can introduce warm windows and FPC, 3-Stub-Tuner for matching
- Diagnostics based on temperatures, vacuum, arc discharges by PMT to switch off RF power
- max. gain w/o insertions ~20 (corr. 200 kW), with insertions ~10 \rightarrow 100 kW CW for tests

Vertical tests of cavity R1 – R6, 20 years ago

Reality – cavity performance today

From the very beginning all cavities limited in the tunnel by FE to about 50% of the achieved field in vertical tests!

Suspects being discussed:

 Particulate contamination during cleanroom and beamline assembly?
 → Possible, but we are following DESY standards in our ISO 4 cleanroom!

- 2. EPDM gate valves in the modules and in the entire accelerator are not hydrocarbon-free
 → Possible, but we could not found hydrocarbons in the machine (anymore)!
- Particulates contamination produced by movable beamline elements close to the cavity in combination with transport mechanism that allows them to migrate into the cavities.
 → Partially proven by monitoring the cavity performance over the last years

More details have been discussed during TTC Meetings Milano 2018 and Vancouver 2019

High power (pulsed) RF processing (HPP)

- HPP done in a PLL regime to modulate an external RF generator to follow LF-detuning
- Constant RF power is stepwise increased up to 14-17 MV/m (depending on cavity)
- HPP stopped if reproducible thermal breakdown or high average helium consumption
- Field amplitude as well as vacuum, temp., dose and light sensors for analysis / protection

all magnets off duty cycle 20 / 600 ms RF power up to 20 kW τ = 2-3 ms, BW ~ 112 Hz

High power (pulsed) RF processing (HPP)

- HPP done in a PLL regime to modulate an external RF generator to follow LF-detuning
- Constant RF power is stepwise increased up to 14-17 MV/m (depending on cavity)
- HPP stopped if reproducible thermal breakdown or high average helium consumption
- Field amplitude as well as vacuum, temp., dose and light sensors for analysis / protection

all magnets off duty cycle 20 / 600 ms RF power up to 20 kW τ = 2-3 ms, BW ~ 112 Hz

- training events are indicated by randomly appearing field drops at high fields or electrons cloud
- not all cavities show same behavior, some benefit more from HPP than others

Cavity degradation over time

- Evaluation of the max. usable acc. gradient for dissipated power of 30 W (each)
- Frequent HPP needed to recover cavity to its initial performance \rightarrow **no miracles**
- Continuous degradation of all cavities over time in btw. HPP
- No improvement by complete therm. cycle done once a year (maintenance)

SRF Gun development at HZDR

Historical overview - Pioneering work at HZDR

History

1988	first proposal	H. Piel et al., 10th FEL conf. Jerusalem, 1988		
1991	first experiments	A. Michalke, PhD thesis, univ. Wuppertal, 1992		
2002 ¹⁾	first electron beam	D. Janssen et al., NIM A, Vol. 507 (2003) 314		
2010	first LINAC acceleration	R. Xiang, et al., Proc. of IPAC'10, Japan, 2010		
2013 ²⁾	first lasing of IR FEL	J. Teichert, et al., NIM A, Vol. 743 (2014) 114		
Since 2018 ³⁾	(friendly) user operation for THz and neutron users	Hassan A. Hafez, et al., Nature Vol. 561, 507– 511 (2018)		
¹⁾ Drossel	(half cell cavity) ²⁾ SRF gun I (3.5	cell cavity) ³⁾ SRF gun II (3.5 cell cavity)		

Cavity: Cathode: Niobium $\frac{1}{2}$ cell, TESLA 1.3 GHz Cs₂Te (262 nm, 1 W laser) thermally isolated, LN₂ cooled

HZDR

Design of the ELBE SRF gun II

- SC solenoid by Niowave (2K) B_{z,max} = 449 mT @ 10 A
- Remote controlled xy-table (77 K)
- Cs₂Te, Cu, GaAs, Mg cathodes
- cathode cooling by LN to 77 K
- cathode transfer into the cold gun
- therm. and electrical isolation
- DC bias up to 7 kV to suppress MP
- moveable (±0.6 mm) by remote stepper for best RF focusing

Cavity and gun performance

parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 – 300 pC
transv. emittance	2 – 15 µm
energy spread	5 – 25 keV
micro pulse rate	100 kHz
beam current (CW)	30 µA
laser pulse length	~2 ps
dark current	30 nA

Mitglied der Helmholtz-Gemeinschaft

Dr.-Ing. André Arnold | Institut für Strahlenphysik | www.hzdr.de

Photocathodes

Cs₂Te for high average current

- high QE up to 12%, 1-2% in gun
- complex preparation based on INFN recipe (deposition of 10 nm Te + Cs activation) in special UHV chambers (3x10⁻¹⁰ mbar)
- special cathode preparation lab in a certain distance to the gun needed
- high vacuum requirement 10⁻¹⁰ mbar
- high risk of cavity contamination

Cathode	Days	Σ Charge	QE	
#090508Mo	30	< 1 C	0.05%	
#070708Mo	60	< 1 C	0.1%	
#310309Mo		fresh OE 8	5% in gu	un 0.6%
#040809Mc	•	total beam	1 time 600) h
#230709Mo	•	extracted (charge <mark>26</mark>	4 C
#250?10Mo	•	Max. CW k	beam curr	ent: <mark>400 μΑ</mark>
#090611Mo	65	< 1 C	1.2%	
#300311Mo	76	2 C	1.0%	
#170412Mo	447	264 C	~ 0.6 %	

Mg cathodes for low average current

- low QE of 0.1 0.3 % (fresh and in gun)
- relatively simple cathode "cleaning" by melting surface to remove MgO with our focused UV cathode laser (2 W/mm²)
- repeated cleaning for same cathode right next to the gun in transport chamber
- moderate vacuum requirement 10⁻⁹ mbar
- low risk of cavity contamination

Cathode	Time	\mathbf{Q}_{b} / \mathbf{I}_{CW}	QE
Mg 201	Mar. 16 – Aug. 16	200 pC / 20 μA	0.2 %
Mg 207	Nov. 16 – Dec. 16	80 pC / 8 μΑ	0.1 %
Mg 207	Mar. 17 – May 17	150 pC / 15 μA	0.2 %
Mg 214	Aug. 17 – Jun. 18	300 pC/ 30 μA	0.3 %
Mg 216	Jun. 18 – now	300 pC/ 30 μA	0.2%

Mitglied der Helmholtz-Gemeinschaft

Routine THz user beam time since 2018

In 2019: 30 non-stop 12 h shifts for external users + 8 MD shifts (20% of total beam time)

Summary

- 18 year's experience of CW SRF with 6 TESLA cavities at 2K
- 100.000 hours SRF operation and 100.000 C acc. charge (~30 Ah)
- Lot of lessons to learn because of issues with high RF and high beam power
 → Be aware Murphy is almost everywhere, but helps to find proper diagnostic!
- SSPA (100 kW installed) worked reliable and with high redundancy last 7 years
- ELBE module has still a to date performance and it is very compact and robust
- From the beginning all cavities in the tunnel limited by FE to about 10 MV/m
- Continuous degradation of all cavities, frequent HPP needed to recover cavity
- Since 2002 HZDR is doing pioneering work on SRF gun development
- We gained enough experience for routine user operation at 200 pC @ 100 kHz

