

# **Operational Aspects of SC RF Cavities with Beam**

Matthías Liepe Department of Physics, CLASSE Cornell University

**Matthias Liepe** 



## And there was beam ...

- Two different points of view:
  - The SRF cavity view:
    - I could function so nicely if the beam wouldn't cause such a mess...
  - The beam view:
    - OK, gaining energy is nice, but why do these cavities also have to disturb me so much?

# The Cavity and the Beam...

#### Impact on the SRF cavity:

- Beam loading, field perturbations, increased RF power
- Beam based field calibration
- HOM power handling and heating issues
- Beam induced trips
- Cavity performance with beam

#### Impact on the Beam:

- Energy gain, energy stability
- Emittance growth
  - Short range wake fields
  - HOM fields, BBU
  - Transverse kick fields
    - Cavity misalignment
    - Asymmetry from couplers, ...
  - RF focusing
- Beam loss due to RF
  trips



## Let's start "simple": The Fundamental mode (passband) and the beam

- Accelerating field
- Beam induced fields: Single bunch and bunch train
- Beam loading and optimal loaded Q
- Beam induced field perturbations
- LLRF field control
- Beam based field calibration





### The Accelerating Mode in an Elliptical RF Cavity



**Matthias Liepe** 



## Multi-cell Cavities

- N coupled cells  $\Rightarrow$  N TM<sub>010</sub> modes = TM<sub>010</sub> passband!
- Highest frequency mode

   (π-mode) is the
   accelerating mode







The Accelerating Mode



**Matthias Liepe** 





#### Accelerating $\pi$ -mode:



#### Accelerating voltage:



Accelerating field gradient:

$$E_{acc} = \frac{V_{acc}}{\text{active cavity length}}$$

**Matthias Liepe** 





*Note: Here I use the circuit definition of the shunt impedance. The so-called accelerator definition of it is a factor of 2 larger!* 

**Matthias Liepe** 

# Excitation of the Fundamental Mode

# Two different sources excite the accelerating mode:

- RF Generator (power source)
  - RF power at the fundamental mode frequency is coupled into the cavity via the input coupler
- Beam current
  - Bunches / bunch train excites the fundamental mode

# Equivalent Circuit Model

#### The full picture: generator - transmission line - coupler - cavity



12





⇒ Use this model to simulate cavity filling, RF field control, beam loading, ...

**Matthias Liepe** 



## More Figures of Merit...

**Resonance frequency:** 

Intrinsic quality factor:

External quality factor:

Loaded quality factor:

Bandwidth of mode:

Cavity detuning:

$$\omega_{0} = 2\pi f_{0} \approx 1/\sqrt{LC}$$

$$Q_{0} = \frac{\omega U}{P_{wall}} = \frac{R}{\omega_{0}L}$$

$$Q_{ext} = \frac{\omega U}{P_{ext}} = \frac{Z_{ext}}{\omega_{0}L}$$

$$Q_{L} = \frac{\omega U}{P_{total}} = \frac{1}{\omega_{0}L} \begin{bmatrix} RZ_{ext} \\ R + Z_{ext} \end{bmatrix}$$

$$\omega_{1/2} = \omega_{0} / 2Q_{L}$$

$$\Delta \omega = \omega_{0} - \omega_{drive}$$

**Matthias Liepe** 



**Matthias Liepe** 



## **Example: FLASH**



The generator and the beam induced voltage compensate each other if Q<sub>L</sub> is properly adjusted.

**Matthias Liepe** 





**Matthias Liepe** 



## Single Bunch

- So far: treated beam as an AC current
- Reality: bunches!
- Accelerating mode voltage induced by a single bunch:  $\Delta V_{bunch} = \omega_0 \frac{R}{O} q_{bunch}$
- On average, bunch "sees" half of its own induced field:

$$V_{acc} = \hat{V} \cos \phi_b - \frac{1}{2} V_{bunch}$$

### (fundamental theorem of beam loading)



**Matthias Liepe** 

## **Bunch Train**

Need to sum individual bunch induced voltages:

$$V_{train} = V_{bunch} \left[ 1 + e^{-\omega_{1/2}\Delta T_b} e^{-i\Delta\omega\Delta T_b} + e^{-\omega_{1/2}2\Delta T_b} e^{-i\Delta\omega^2\Delta T_b} + e^{-i\Delta\omega^2\Delta T_b} \right]$$

Octobe

#### $\Rightarrow$ Substructure!

⇒ Envelope given by previous equation





## **Steady State**

• Sum of beam induced and generator induced voltage is not constant, but shows saw-like







## But there are N TM<sub>010</sub> modes in a N-cell Cavity...

> Both, the generator and the beam will not only excite the accelerating  $TM_{010}$  mode, but with small amplitudes also all other  $TM_{010}$  modes:

#### Example: TTF 2x7-cell superstructure





# RF Power Requirements with Beam

The RF power required to maintain an accelerating voltage V<sub>acc</sub> is given by:

$$P_{g} = \frac{V_{acc}^{2}}{8\frac{R}{Q}Q_{ext}} \left\{ \left(1 + 2\frac{R}{Q}Q_{ext}\frac{\bar{I}_{b}}{V_{acc}}\cos\varphi_{b}\right)^{2} + \left(\frac{\Delta\omega}{\omega_{1/2}} + 2\frac{R}{Q}Q_{ext}\frac{\bar{I}_{b}}{V_{acc}}\sin\varphi_{b}\right)^{2} \right\}$$
  
beam phase

From this one can calculate, that the minimum RF power is required if:

**optimal loaded Q:**  

$$Q_{opt} = \frac{V_{acc}}{2\left(\frac{R}{Q}\right)\overline{I}_b \cos \varphi_b}$$
All power is transferred to the beam (no reflected power)

**Matthias Liepe** 

0



**Matthias Liepe** 

## Example 2: Cornell ERL Main Linac

#### ERL: ⇒ No effective beam loading in main linac! (accelerated and decelerated beam compensate each other)



**Matthias Liepe** 

# (**B**) ERL Cavity Operation at $Q_L = 10^8$

#### Power for cavity operation at 12.3 MV/m at the JLAB FEL:



**Matthias Liepe** 

# **Beam induced Field Perturbations**

#### From

- Beam current modulations
- Bunch to bunch charge fluctuations
- Return phase fluctuation of the decelerated beam in and ERL
- Potential instabilities in storage rings (coupling of energy and path length)
- Pulsed beam transients (FLASH, ILC, SNS)
- Excitation of other passband modes
- $\Rightarrow$  Beam energy fluctuation!

# Example 1: Bunch Charge Fluctuations

bunch charge fluctuations  $\Rightarrow$  beam loading fluctuations  $\Rightarrow$  correlated amplitude and phase fluctuations

Example: pulsed sc proton linac (A. Mosnier et al.)



**Matthias Liepe** 



## Example 2: Beam Transients



**Matthias Liepe** 

## Example 3: Excitation of Passband Modes (I)

Example: TTF/Flash 9-cell cavity



**Matthias Liepe** 

# Example 3: Excitation of Passband Modes (II)

#### Example: TTF 9-cell cavity with 1 MHz beam



Matthias Liepe

### Example 4: ERL with Return Phase Error

Cavity tuners need to adjust the cavity detuning to its optimal value to compensate for the reactive loading

Tom Powers, Chris Tennant; TJNAF FEL







## Field Stability Requirements

- Different accelerators have different requirements for field stability!
- approximate RMS requirements:
  - 1% for amplitude and 1 deg for phase (storage rings, SNS)
  - 0.1% for amplitude and 0.1 deg for phase (linear collider, ...)
  - down to 0.01% for amplitude and 0.01 deg for phase (XFEL, ERL light sources)



- Measure cavity RF field.
- Derive new klystron drive signal to stabilize the cavity RF field.
- Derive new frequency control signal.

## LLRF Control: A complex System



#### Many connected subsystems...

**Matthias Liepe** 



## LLRF Hardware












### Achieved Energy Stability: TTF/FLASH



**Matthias Liepe** 

## B Achieved Energy Stability: TTF/FLASH



**Matthias Liepe** 

### Adaptive Feedforward (SNS, FLASH)



• Adaptively adjusted forward power to compensate beam transients in pulsed mode operation

**Matthias Liepe** 

# (B) ERL high Q<sub>L</sub> Cavity Test Operation

With feedback: Verwand field stability with 5 mA ERL



**Matthias Liepe** 



#### **Beam Based Calibration**



## Setting the RF Phase at SNS (I)



- A beam based measurement must be done to initially set each cavity RF phase setpoint
- Scan the cavity phase of a cavity 360, and observe the resultant change in the Time of Flight (TOF) between 2 downstream detectors
  - Compare this difference with a model calculations.
  - Gives the input beam energy, cavity voltage and RF phase offset calibration
  - Need good relative phase measurements from the detectors (~ 1degree!)
- Scan each cavity sequentially





**Matthias Liepe** 

### Setting the RF Phase at SNS (III)

#### SCL Tune-up – Linac Energy Gain is **Understood and Predictable**



- Energy gain per cavity is predictable to a few 100 keV and distributed about 0.
- Final energy is predictable to within a few MeV



**Matthias Liepe** 





### More cavity eigenmodes: Higher-Order-Modes

- Beam excitation
- HOM heating issues
- Beam based HOM damping measurements
- HOM based BPM





- Short range wake-field: Fields inside the bunch and just behind it
- Long range wakes (Higher-Order-Modes)

•Monopole modes: RF heating and longitudinal emittance dilution

•Dipole modes: transverse emittance dilution and beam break-up







**Matthias Liepe** 

### HOM Excitation by a Single Bunch

The HOM power excited by a single bunch depends on:

- the HOMs of the cavity (cavity shape),
- the bunch charge  $(P_{HOM} \propto q^2)$ ,
- the bunch length (i.e. the spectrum of a bunch).



### HOM Excitation by a Bunch Train

*The excited HOM power of a bunch train depends on:▶* the HOM excitation by the individual bunches,

- the beam harmonic frequencies and the HOM frequencies (resonant excitation is possible!),
- > the bunch charge and the beam current
- $\succ$  and the external quality factor,  $Q_{ext}$  of the modes.

### **Average Monopole Power**



- Bunch excites EM cavity eigenmodes (Higher-Order Modes)
- Single bunch losses determine the <u>average</u> monopole HOM power per cavity.



### **Resonance Monopole Mode Excitation**

Resonant Monopole Mode Excitation if f<sub>HOM</sub>=N·f<sub>bunch</sub>

If a monopole mode is excited on resonance, the loss for this mode can be very high:

$$P = 2 \left(\frac{R}{Q}\right) Q I_{beam}^{2}$$
 Need strong  
HOM damping!

⇒ Example: To stay below 200 W with I=200 mA: • achieve  $(R/Q)Q < 2500 \Omega$ ,

• or avoid resonant excitation of the mode.



## Example: HOM Power Heating

- Example: Shielded bellows at KEK-B:
  - Comb-type RF shield developed to replace RF fingers.



### Absorbing High Frequency HOM Power



**Matthias Liepe** 





Beam pipe temperature increases by beam induced heating

**Matthias Liepe** 

#### **Beam Based HOM Damping Measurements**

 The beam can be used to excite HOMs on purpose to search for weakly damped / trapped HOMs. -30.0

TTF/Flash results with current modulated beam reveled several weakly damped modes.

Some of them where initially not predicted by numerical **HOM** calculations!

HOM couplers

dogleg magnet

e<sup>16</sup>MeV

.1**11.1**11

spectrum analyser



## Cavity HOMs can be used as a BPM



# Relative position resolution $\sim 4 \,\mu m$

Angular scan resolution and accuracy < 50 µrad



(cf. M. Ross and J. Frisch).

**Matthias Liepe** 



### Cavity Performance and Performance Degradations - Some Examples -

**Matthias Liepe** 



### Linac Cavity Performance

- SRF cavity performance can change over time:
  - "Dust" can propagate through beam pipe into cavity (beam fields)
  - Field emitter can turn on suddenly
  - Special events (vacuum leaks...)
  - Collective effects

•••





Μ



### **Experience from FLASH**

- Recent measurements show that there is basically no degradation in gradient vs. time.
- Never had vacuum failures or dirt/dust contaminating the cavities. Also no problems after conditioning etc.
- Conditioned state is preserved also after some time of operation and after some time off.
- So far, there was no need to replace modules due to degradation or failure (but destroyed tuning motors)
- $\Rightarrow$  Whole machine is assembled "dust free"!



cavity performance, or weakest cavity will limit all other cavities!!



### FLASH Operation

| module | cavity        | E <sub>acc</sub> [MV/m] | attenuator<br>[dB] | comment                         |
|--------|---------------|-------------------------|--------------------|---------------------------------|
| ACC1   | 1, 2, 3, 4    | 13                      |                    | capture section, lower gradient |
|        | 5, 6, 8       | 20                      |                    |                                 |
|        | 7             | 14                      | 3                  | too high FE                     |
| ACC2   | 3, 4, 5, 7, 8 | 23                      |                    | limited at 24 25 MV/m           |
|        | 1             | 21                      | 1                  | quench                          |
|        | 2             | 16                      | 3                  | quench                          |
|        | 6             | 18                      | 2                  | quench                          |
| ACC3   | 1 8           | 25                      |                    | limited at 25.5 MV/m            |
| ACC4   | 1 8           | 23                      |                    | limited at 23.5 MV/m            |
| ACC5   | 1 8           | 25                      | _                  | limited at 26.0 MV/m            |
| ACC6   | 1 4           | 32                      | XFEL type          | limited at 33.0 MV/m            |
|        | 5, 6          | 21                      | <b>RF power</b>    | limited at 22.0 MV/m            |
|        | 7, 8          | 26                      | distribution       | limited at 27.0 MV/m            |
|        |               |                         |                    |                                 |

**Matthias Liepe** 



**FLASH Operation** 







**Matthias Liepe** 



Example 2: SNS



**Matthias Liepe** 





### SNS: HOM Loop-Coupler Problems

#### **HOM Coupler (subcomponent concern I)**



**Matthias Liepe** 

## (I) SNS: Operating Temperature (I)



**Matthias Liepe**
# SNS: Operating Temperature (II)



For SNS, operation at 4.2 K is overall more economical up to about ½ of the design beam power (if achieved by reducing repetition rate to 30 Hz)

**Matthias Liepe** 

#### Example 3: KEK-B, Long Term Cavity Operation (I)

#### (1) maximum accelerating voltage T. Furuya, S. Mitsunobu

- All cavities can provide Vc >2 MV after 7 years operation.
- Vc of D11C degraded after the vacuum trouble.
- Vc of D11B degraded after changing the coupling of the input coupler.



**Matthias Liepe** 

#### Example 3: KEK-B, Long Term Cavity Operation (II)

#### (2) Intrinsic Q

T. Furuya, S. Mitsunobu

- Unloaded Q at 2MV (8MV/m) has gradually degraded to 3-5x10<sup>8</sup>.
- Huge amount of out gas from the ferrite dampers has degraded the cavity performance?
- Baking may recover the performance, but we have to consider the risk of vacuum leak at the indium seals.
- The Q at the operating voltage (1.4MV) still keeps Q >1x10<sup>9</sup>.





- The cause of every beam abort is analyzed immediately.
- Caused by beam loss (60%), RF (28%), or others (12%).
- Average number of beam aborts in two rings caused by any RF reasons is about once or twice /day.

**Matthias Liepe** 



## Example 4: CEBAF

- See changes in cavity performance vs. time
- Not all of these changes are correlated to external disturbances (warm up, ..)!









# **CEBAF Downtime (1999)**

**CEBAF Downtime Contribution by System - FY99** 



Other than the arc trips, the SRF system directly contributed 48 minutes (less than 0.1%) of the 1620 hours of unscheduled downtime.

**Matthias Liepe** 



# Emittance Dilution caused by SRF Cavities

- Some Examples -

**Matthias Liepe** 

## Example 1: Transverse BBU in ERLs

 In an ERL a feedback system formed between cavities and the beam is closed. ⇒ Instability at sufficient high currents (BBU threshold)!



• Simple model for instability beam current:

$$I_{BBU} \propto \frac{\omega}{(R/Q) Q^4}$$

For I<sub>BBU</sub> > 100 mA, need strong HOM damping (<u>Q ≈ 10<sup>4</sup> to 10<sup>5</sup></u>)!

**Matthias Liepe** 

# **Example 2: Coupler Kicks**

- Input couplers cause transverse, time dependent kick fields on axis, and thereby emittance growth.  $\Delta P_u$
- Solutions

$$\kappa = \frac{\Delta P_y}{\Delta P_{\parallel}}$$

- Optimize distance coupler first cell
- Symmetry
- Compensating stub



# Example 3: Cavity Misalignment

# • Cavity and cryomodule offset and tilt cause emittance growth





83

# Example 4: BBU from high Q HOM

 Insufficiently damped dipole modes can cause emittance growth and even beam break-up







#### **SRF** Cavity and Beam

#### What would be one without the other?

#### If we do it right, they both can be happy...

**Matthias Liepe**