THE ACCELERATOR FACILITIES OF THE NATIONAL RESEARCH FOUNDATION IN SOUTH AFRICA

J.L. Conradie, iThemba LABS, P.O. Box 722, Somerset West 7130, South Africa, for the accelerator group and collaborators

RuPAC 2008

18-09-08 - 03-10-08 Zvenigorod

iThemba LABS and the NRF

iThemba L(aboratory) for A(ccelerator)-B(ased) S(ciences) is a multi-disciplinary research centre, operated by the NRF (National Research Foundation). It provides accelerator and ancillary facilities for:

- Research and training in the physical, biomedical and material sciences
- Treatment of cancer patients with energetic neutrons and protons and related research
- Production of radioisotopes and radiopharmaceuticals for use in nuclear medicine, research and industry and related research

Outline of the talk

- Status and the cyclotron facilities
- Status of the electrostatic accelerators
- New Projects

Separated-Sector Cyclotron Facility

BEAM SCHEDULE

Beams delivered at iThemba LABS

 \bullet

Some beams at iThemba LABS			
Element	Mass	Energy range MeV	
		from	to
Н	1	11.5	227
He	4	25	200
В	11	55	60
С	12	58	400
С	13	75	82
Ν	14	140	400
0	16	73	400
0	18	70	110
Ne	20	110	125
Ne	22	125	125
Al	27	150	349
Si	28	141	141
Cl	37	205	250
Ar	40	280	280
Zn	64	165	280
Kr	84	450	530
Kr	86	396	462
I	127	730	730
Xe	129	750	790
Xe	136	750	750

66 MeV Proton Beam

- Beam current on target: 250 μA
- Transmission efficiency
 through the SSC:

99.8%

Solid-pole injector cyclotron 1 (SPC1)

Solid-pole injector cyclotron 2 (SPC2)

The SSC

4

FLAT-TOPPING AT ITHEMBA LABS

>TO IMPROVE BOTH THE QUALITY AND INTENSITY OF THE 66 MeV PROTON BEAM FOR RADIOISOTOPE PRODUCTION

Without Flat-topping => pure sinusoidal rf-voltage for

THE EFFECT of FLAT-TOPPING

Two SPC1 flat-top resonators

The orbit patterns without and with flat-topping

Installation of the Flat-top Resonator

The beam position monitor

Beam Alignment on x- and y- axes

Residual gas fluorescence monitor

Gas molecules in the beam pipe,from either residual or injected gas, interact with the passing particle beam.

Electrons are promoted to excited states.

When the electrons fall to lower energy orbitals, photons are emitted.

Photons are collected to measure the profile.

M.Plum, BIW2004, Knoxville

There is good agreement between the beam profiles measured with a 420 μ A, 3.14 MeV proton beam at the PMT (broken line) and slit positions (solid line) that are 257 mm apart

Non-Destructive beam Current Measurement

Capacitive probe

Halo Monitors to monitor beam loss along the beamlines

The new vertical beam line for Radionuclide production

- 1. the horizontal beam line
- 2. the 90° bending magnet
- 3. two quadrupole magnets
- 4. sweeper magnets
- 5. steerer magnet
- 6. vacuum chamber for diagnostic equipment with a Faraday cup, harp and capacitive probe for current measurement
- 7. shielding lift mechanism for target exchanges
- 8.9. and 10. inner iron shield
- 11. target
- 12. water tanks with a 4% ammonium pentaborate solution
- 13. iron shield
- 14. borated paraffin-wax shield
- 15. support structure.

LAYOUT OF BEAM SPLITTER LINE

HP = HARP FC = FARADAY CUP BPM = BEAM POSITION MONITOR

Beam direct behind the electrostatic channel

Beam in front of the magnetic channel

Grenoble GTS 14 GHz and 18 GHz ECR Ion Source

HMI 14.5 GHz ECR Ion Source

Radioisotopes produced at iThemba LABS

- Currently, iThemba LABS weekly produces the medical radioisotopes ⁶⁷Ga, ¹²³I and ⁸¹Rb for the preparation of radiopharmaceuticals for local users
- ⁶⁸Ge and ⁸²Sr are produced for the Department of Energy (DOE) of the United States of America for use in medical generators to obtain the PET radioisotopes ⁶⁸Ga and ⁸²Rb, respectively
- ²²Na is produced for the manufacture of ²²Na positron sources
- Other radioisotopes, such as ⁵²Fe, ⁵⁵Fe, ⁸⁸Y, ¹⁰³Pd, ¹¹¹In, ¹³³Ba, ¹³⁹Ce, and ²⁰¹TI are also be produced on order,

Bombardment station 1

The k=600 Magnetic Spectrometer

A kinematically corrected QDD spectrometer for light particles

70 mrad acceptance

Resolution: 26 keV at 200 MeV Dispersion matched "Faint beam method"

Developing a zero degree mode of operation for proton inelastic scattering •Studies of M1 transitions in (p,p')

RuPAC 2008

Experiments:

- •High resolution knock-out reactions e.g. (p,2p) and (p, $p\alpha$)
- •Decay of giant resonances in (p,px) for x=n,p, α
- •Fine structure in giant resonances with ²⁰⁸Pb,⁹⁰Zr(p,p')
- •Study of mixed symmetry state

Afrodite γ -detector array

8 escape suppressed clover detectors Efficiency: 1.6% at 1.33 MeV

8 segmented planar Ge detectors Efficiency: 6% at 100 keV

γ- Spectroscopy Experiments:

- •Dipole bands in ^{195,197}Bi
- •Searches for chirality
- •Signature splitting and inversion in ^{164,165}Ta
- Low energy transitions in ^{197,198}TI
 Lifetimes of ns isomers

New development for AFRODITE

•DIAMANT (4π array of CsI detectors for particle- γ coincidences) on loan for short periods (collaboration with ATOMKI (Hungary)

•Electron spectrometers (from Orsay) for $e^{-} - \gamma$ coincidences

•Recoil detector for exit channel selection

Neutron Linerapy

NEUTRON BEAML

0	1	2 m						

Control room 6MV Van de Graaff 2003

Control room Van de Graaff accelerator 2007

24 Digital meters installed in the terminal of the 6 MV CN Van De Graaff

Control page for the power supplies and slits

<mark>ر ک</mark> و	ionsole P	rogram												
File	Pages	Tables	Print	Options	PT FC	: CU	JR							
											1			
	⊻ Pag	eKO - van	i de Gra	aff BLine						I 🗌	Slit 1 Y n	an		
	DONE	F0	RMAT		Re f		Act Unit	s Sta	itus		DONE	ыр С		
	Quad 1	cur			1.0	00	1.093	Α	on			-		
	Quad 2	cur			3.3	00	3.351	Α	on		Reference	e	Actual 1	
	Slit 1	X pos			- 3	.1	-3.1	mm	ok			15		15
	Slit 1	X gap			15	.0	14.9	mm	ok			P		
	Slit 1	Y pos			2	.8	2.8	mm	ok			1		Þ
	<mark>Slit 1</mark>	Y gap			15	.0	15.1	mm	ok					Þ
	Steare	r 1 X			0.4	45	0.476	A	on		Immediat	e Mode	Set & Ente	er
	Steare	r 1 Y			1.8	00	1.836	A	on		Abort Act	tion		
	Steare	r 2 X			0.0	00	0.000	A	not	def			ABORT	NTER
	Steare	r 2 Y			-0.1	00	0.000	A	not	def			0.2 mm	
	Steare	r 3 X			1.1	20	1.132	A	on				0.5 mm	
	Steare	r 3 Y			3.5	31	3.547	A	on				1.00	
	Steare	r Swite	hed	×	-1.1	10	-1.041	A	on				0	
	Steare	r Swite	hed	Y	-6.1	50	-5.948	A	on					
	Bend M	ag 90 d	leg cu	r	2.9	10	2.907	A	on				5 mm	
	Switch	er Mag	cur		0.0	00	-0.000	A	off		Diaba Ma		10 mm	n
	40kv B	elt Cha	irge c	ur	1	40	79	uA	on			Juse Du	IION - ENIE	R
	40kv B	elt Cha	irg vo	l t	0	.0	26.3	kV	off					
	Quad 3	cur			0.3	32	0.335	Α	on					
	Quad 4	cur			0.4	40	0.433	Α	on					
	Quad 5	Switch	ied cu	r	0.1	34	0.130	Α	on					
	Quad 6	Switch	ied cu	r	0.0	55	0.054	A	on					

Control page of the vacuum system

Proposed layout of beam lines for AMS of the 6MV EN tandem accelerator

Extraction side of the 6 MV EN Tandem before the refurbishment

Accelerator injection

Injection side of the tandem accelerator after refurbishments

Extraction beam line of tandem accelerator

Removing the tubes of the tandem

The resistor chain

Pelletron Chain

We are in the process of building a Multi cathode Source of Negative Ions by Cesium Sputtering base on the LLNL design (foto) for AMS

New dedicated facility for proton therapy

Future dedicated 70 MeV H⁻ accelerator for isotope production, neutron therapy and radioactive beams

ECR vault layout

Display of the Halo Monitors

Radioisotopes produced with high-energy beams

iThemba LABS is one of a few facilities that utilises proton beam energies significantly above 30 MeV for large-scale production of radioisotopes.

High-energy proton accelerators have a definite use for the production of radioisotopes, e.g.

- > $^{68}Ge:$ (p,4n) nuclear reaction on ^{71}Ga increases production yield of ^{68}Ge significantly when added to the yield of the (p,2n) reaction on ^{69}Ga
- ⁸²Sr: (p,4n) nuclear reaction on ⁸⁵Rb
- > ¹²³I: (p,5n) nuclear reaction on ¹²⁷I via the ¹²³Xe precursor
- ²²Na: (p,xn) nuclear reaction on ^{nat}Mg; ²⁵Mg(p,α)²²Na; ²⁶Mg(p,nα)²²Na
- ⁶⁷Ga: (p,4n) nuclear reaction on ^{nat}Ge (in tandem with Zn gives 2.5 times more activity than only a Zn target)

Radioisotopes produced at iThemba

- Currently, iThemba LABS produces weekly the medical radioisotopes ⁶⁷Ga, ¹²³I and ⁸¹Rb and these radioisotopes are used to prepare radiopharmaceuticals for the local users
- ⁶⁸Ge and ⁸²Sr are produced for the Department of Energy (DOE) of the United States of America for use in medical generators to obtain the PET radioisotopes ⁶⁸Ga and ⁸²Rb, respectively.
- ²²Na is produced to manufacture ²²Na positron sources.
- Other radioisotopes, such as ⁵²Fe, ⁵⁵Fe, ⁸⁸Y, ¹⁰³Pd, ¹¹¹In, ¹³³Ba, ¹³⁹Ce, and ²⁰¹TI can also be produced on order,
- A wider range of radionuclides will be produced when the new vertical beam target station (VBTS) becomes operational.

Summary of current status

Refurbishment is now 98% completed First beam delivered, up to the faraday cup in front of experimental setup on the 31 May 2007. The official inauguration of the upgrade facility was on the 3 June 2007.

- Charging belt replaced with Pelletron Charging System
- New acceleration tubes installed
- Gas stripper being converted to recirculating gas stripper
- Voltage grading resistors renewed
- Terminal Potential Stabilizer (TPS) system installed
- Beam optics calculated and beamlines remodeled
- New diagnostic equipment designed (Faraday Cup, Slits)
- New vacuum chambers manufactured and installed
- Vacuum system automated and improved
- New central computer control system 95% completed
- Complete the project within the budget
- Completed the two year project three month behind schedule due to additional task which was not initially part for refurbishment.

Depth dose curves for different treatment modalities

Isosentriese Gantry

Bombardment Station - ¹⁸F

¹⁸F Target Station

Produce: ¹⁸F

Enriched water target

Chemical Processing Facilities

¹⁸F-Automated Chemical Processing Hot Cells

Manual Manipulator Hot Cells

Transport system

Dispensing / Quality Control Facilities

¹⁸F-FDG Dispensing Clean Room

¹⁸F-FDG Automated Dispensing Unit

Quality Control

Bombardment Station-HBTS

Horizontal Beam Target Station (HBTS) Produce: ⁶⁷Ga, ¹²³I, ⁸¹Rb, ²²Na, ⁸⁸Y, ⁵⁷Co and ¹⁰⁹Cd,

HBTS Target and target holders

230 MeV room-temperature cyclotron from IBA

Control room Van de Graaff accelerator

Injection side of the tandem accelerator after refurbishments

Bombardment Station-VBTS

Vertical Beam Target Station (VBTS)

Produce:⁸²Sr and ⁶⁸Ge in tandem

VBTS Thick Target Holders

Radioisotopes produced with high-energy beams

iThemba LABS is one of a few facilities that utilises proton beam energies significantly above 30 MeV for large-scale production of radioisotopes.

High-energy proton accelerators have a definite use for the production of radioisotopes, e.g.

- > $^{68}Ge:$ (p,4n) nuclear reaction on ^{71}Ga increases production yield of ^{68}Ge significantly when added to the yield of the (p,2n) reaction on ^{69}Ga
- ⁸²Sr: (p,4n) nuclear reaction on ⁸⁵Rb
- > ¹²³I: (p,5n) nuclear reaction on ¹²⁷I via the ¹²³Xe precursor
- ²²Na: (p,xn) nuclear reaction on ^{nat}Mg; ²⁵Mg(p,α)²²Na; ²⁶Mg(p,nα)²²Na
- ⁶⁷Ga: (p,4n) nuclear reaction on ^{nat}Ge (in tandem with Zn gives 2.5 times more activity than only a Zn target)
Current Radiopharmaceuticals in routine production

Radionuclide	Half-Life (hours)	Nuclear Reaction	Radiopharmaceutical Product	Main Use
¹⁸ F	1.83	¹⁵ O(p,n) ¹⁸ F	¹⁸ F-FDG	Glucose metabolic studies
⁶⁷ Ga	78.3	Zn(p,xn) ⁶⁷ Ga Ge(p,x) ⁶⁷ Ga	⁶⁷ Ga-citrate	Localization of certain tumours and inflammatory regions
⁸¹ Rb/ ^{81m} Kr	4.58	Kr(p,xn) ⁸¹ Rb	⁸¹ Rb/ ^{81m} Kr generator	Lung ventilation studies
¹²³	13.2	¹²⁷ I(p,5n) ¹²³ Xe → ¹²³ I	¹²³ I-sodium iodide ¹²³ I-mIBG	Thyroid studies Localization of certain tumours such as neuroblastoma, pheochromocytoma

Current Radionuclides in routine production list continue

Radionuclide	Half-Life (days/years)	Nuclear Reaction	Product	Main Use
⁸² Sr	25 days	Rb(p,xn) ⁸² Sr	Produced as a radionuclide	Used to manufacture ⁸² Sr/ ⁸² Rb generators
⁶⁸ Ge	271 days	Ga(p,xn) ⁶⁸ Ge	Produced as a radionuclide	Used to manufacture ⁶⁸ Ge/ ⁶⁸ Ga generators or used for calibration of gamma camera's or PET CT scanners
⁸⁸ Y	106.6 days	Sr(p,xn) ⁸⁸ Y	Produced as a radionuclide	Non –medical application
¹⁰⁹ Cd	453 days	Ag(p,xn) ¹⁰⁹ Cd	Produced as a radionuclide	Non-medical application
²² Na	2.602 years	Mg(p,n) ²² Na	Produced as a radionuclide	Positron Annihilation Studies

6 MV CN Van de Graaff Accelerator

- Manufactured by High Voltage Engineering USA.
- Installed in 1963
- Vertical machine, Voltage range: 0.6 to 6 MV
- Tank 18 ton. Pressure: 16 Bar, Gas: N2=80% and CO2=20%
- Gas compressor, dryer and storage tank.
- Opening cycle 27 hours
- Current: DC 20 uA max. 1.5 nS, Pulsed @ 2 MHz 5 uA
- Drive motor 10 kW 60 Hz 1700 RPM, Belt speed 60 km/h
- Terminal generator 115 V 400 Hz 2 kW max
- Column/accelerating tube: 2 tubes with 132 insulated rings in total, with a resistor chain of 10¹¹ ohm

Control page of the vacuum system

Pelletron Chain

CYCLOTRON OPERATING SCHEDULE

NEUTRON AND PROTON THERAPY

Compared with conventional radiations (photons, electrons):

 Neutrons have similar physical characteristics to x-rays and are more effective for treating radioresistant tumors, usually large and/or slow-growing, such as salivary gland tumours, advanced prostate cancer

Neutrons are used because of their BIOLOGICAL EFFECTS

 Protons have more favorable dose distributions (fixed range, little scattering) which can easily be controlled and are used to treat well-delineated lesions (benign and malignant) close to critical structures, which can easily be avoided, such as brain lesions, early prostate cancer

Protons are used because of their PHYSICAL PROPERTIES