DEVELOPMENT OF THE ECR ION SOURCES FOR THE FLNR (JINR) CYCLOTRONS

S.L. Bogomolov, G.G. Gulbekian, A.A. Efremov Joint Institute for Nuclear Research, Dubna, Russia bogomol@nrmail.jinr.ru

FLNR (JINR) CYCLOTRONS WITH ECRION SOURCES

U400 + ECR4M

U400M + DECRIS-2

CI-100 + DECRIS-SC

D

U

b

n

B

NEW CYCLOTRONS

DC-72

DECRIS-2m

DC-60 DECRIS-3

The ECR ion source

B

FLNR Ion Sources Group

3

DECRIS - Dubna ECR Ion Sources

DECRIS-2, DECRIS-2m, DECRIS-3, DECRIS-4 are "room temperature" **ECR** ion sources. The axial magnetic field is created by two coils with independent power supplies. The radial magnetic field is created by permanent magnet hexapole, made from NdFeB.

DECRIS-SC – axial magnetic field is created by superconducting solenoids

 \mathbb{N}

R

 D

U

0

n

B

DECRIS-2 – **U-400M cyclotron** – **1995** ECR-4M – U-400 cyclotron – 1996 (collaboration FLNR – GANIL (France)) **DECRIS-3** – TESLA Accelerator Installation (Belgrade) -1997 **DECRIS-2m – BIONT Inc. (Bratislava) – 2003** DECRIS-SC - CI-100 cyclotron - 2004 **DECRIS-3** - DC-60 accelerator complex (Astana, Kazakhstan) – 2006 **DECRIS-4** – in operation at the test bench - 2006 **DECRIS-2m** – tested \longrightarrow DC-72 cyclotron (Bratislava) – 2009 **DECRIS-SC2** – new ion source for U-400M – under commissioning **DECRIS-SC3** – for DC-350 cyclotron - project

DECRIS -1

B

1990 1994 г.

J I N R

DECRIS-1

Charge state	4+	5+	6+	7+	8+	9+	11+	Support gas
Ν	270	92	17					
0		16 0	87	26				
Ar					70	24	5	
Ar					95	45	9	Не
Ar					110	70	15	Oxigen

 DECRIS-2
 U-400M cyclotron, 1995

 DECRIS-2m
 BIONT Inc., 2003

 DECRIS-2m
 DC-72 cyclotron, 2009

AXIAL MAGNETIC FIELD					
Peak on axis, injection side	1.2 T				
Peak on axis, extraction side	0.85 T				
Length of the main stage mirror	19 cm				
HEXAPOLE					
External diameter, central part	19 cm				
External diameter, end part	16 cm				
Internal diameter	7 cm				
Hexapole length	20 cm				
Hexapole field on the chamber wall	1.1 T				
PLASMA CHAMBER					
Internal diameter for the main stage	6.4 cm				
Internal diameter for the injection part	2.9 cm				
Length for the main stage	22 cm				
SOLENOID					
Solenoid number	2				
Internal diameter	18 cm				
External diameter	34 cm				
Typical coil current	950 A				
Maximal coil current	1300 A				
Typical power consumption	< 60 kW				
Cooling water pressure	5 Bars				

Artiger & rEduce Reviewager (Jug)

MAIN PARAMETERS				
f	14 GHz	18 GHz		
W _{total}	68 kW	120 kW		
B _{inj}	1.23 T	1.45 T		
B _{min}	0.46 T	0.58 T		
B _{extr}	1.04 T	1.25 T		
L _{mirror}	20 cm	20 cm		
Source	40 cm	40 cm		
length				
Source	44 cm	44 cm		
diameter				
Plasma chamber	6.4 cm	6.4 cm		
diameter				
COILS				
Coils number	2	2		
Coils number I _{max}	2 1000 A	2 1300 A		
Coils number I _{max} U _{max}	2 1000 A 34 V	2 1300 A 45 V		
Coils number I _{max} U _{max} ΔP	2 1000 A 34 V ≤ 10	2 1300 A 45 V ≤ 15/≤		
Coils number I _{max} U _{max} ΔP	2 1000 A 34 V ≤ 10 Bars	2 1300 A 45 V ≤ 15/≤ 20		
Coils number I _{max} U _{max} ΔP ΔT	2 $1000 A$ $34 V$ ≤ 10 Bars 25^{0}	$2 \\ 1300 \text{ A} \\ 45 \text{ V} \\ \leq 15/\leq \\ 20 \\ 32^{0}/27^{0}$		
Coils number I _{max} U _{max} ΔP ΔT Cooling water	$\begin{array}{c} 2 \\ 1000 \text{ A} \\ 34 \text{ V} \\ \leq 10 \\ \text{Bars} \\ 25^{0} \\ 2.5 \text{ m}^{3}/\text{h} \end{array}$	$\begin{array}{c} 2 \\ 1300 \text{ A} \\ 45 \text{ V} \\ \leq 15/\leq \\ 20 \\ 32^{0}/27^{0} \\ \overline{3.5 \text{ m}^{3}/\text{h}} \end{array}$		
Coils number I _{max} U _{max} ΔP ΔT Cooling water consumption	$2 \\ 1000 A \\ 34 V \\ \le 10 \\ Bars \\ 25^{0} \\ 2.5 m^{3}/h$	$\begin{array}{c} 2 \\ 1300 \text{ A} \\ 45 \text{ V} \\ \leq 15/\leq \\ 20 \\ 32^{0}/27^{0} \\ 3.5 \text{ m}^{3}/\text{h} \end{array}$		
Coils number I _{max} U _{max} ΔP ΔT Cooling water consumption HEXA	$\frac{2}{1000 \text{ A}} \\ \frac{34 \text{ V}}{\leq 10} \\ \frac{25^{0}}{2.5 \text{ m}^{3}/\text{h}} \\ \frac{25^{0}}{2.5 \text{ m}^{2}/\text{h}} \\ \frac{25^{0}}{2.5 \text{ m}^{2}/\text{h}} \\ \frac{1000 \text{ m}}{2.5 \text{ m}^{2}/\text{m}} \\ \frac$	$\frac{2}{1300 \text{ A}} \\ \frac{45 \text{ V}}{\leq 15/\leq} \\ 20 \\ 32^{0}/27^{0} \\ \overline{3.5 \text{ m}^{3}/\text{h}} $		
Coils number I _{max} U _{max} ΔP ΔT Cooling water consumption HEXA Material	2 $1000 A$ $34 V$ ≤ 10 Bars 25^{0} $2.5 m^{3}/h$ POLE NdFeB	$\frac{2}{1300 \text{ A}} \\ \frac{45 \text{ V}}{\leq 15/\leq} \\ 20 \\ 32^{0}/27^{0} \\ 3.5 \text{ m}^{3}/\text{h} \\ \\ \text{NdFeB} \\ \end{array}$		
Coils number I _{max} U _{max} ΔP ΔT Cooling water consumption HEXA Material Internal diameter	2 1000 A 34 V ≤ 10 Bars 25^{0} 2.5 m ³ /h POLE NdFeB 7 cm	$\frac{2}{1300 \text{ A}} \\ \frac{45 \text{ V}}{\leq 15/\leq} \\ 20 \\ 32^{0}/27^{0} \\ 3.5 \text{ m}^{3}/\text{h} \\ \hline \\ NdFeB \\ 7 \text{ cm} \\ \hline \\ \end{array}$		
Coils number I _{max} U _{max} ΔP ΔT Cooling water consumption HEXA Material Internal diameter Hexapole field	2 1000 A 34 V ≤ 10 Bars 25 ⁰ 2.5 m ³ /h POLE NdFeB 7 cm 1.1 T	$\frac{2}{1300 \text{ A}} \\ \frac{45 \text{ V}}{\leq 15/\leq} \\ 20 \\ 32^{0}/27^{0} \\ 3.5 \text{ m}^{3}/\text{h} \\ \hline \\ NdFeB \\ 7 \text{ cm} \\ 1.1 \text{ T} \\ \hline \\ \end{array}$		

DECRIS-3 "TESLA" Accelerator Installation, 1997 **DECRIS-3 - DC-60 cyclotron, 2006**

DECRIS-3

FLNR Ion Sources Group¹¹

Development of DECRIS

FLNR Ion Sources Group $^{-14}$

TYPICAL ION CURENTS (eµA)

Ion	Li	B	0	Ar	Kr	Xe
2+	300					
3+	70	200				
4+		80				
5+			660			
6+			450			
7+			40			
8+				600		
9+				340	100	
18+						45
20+						40

FLNR Ion Sources Group -15

D

U

b

Ŋ

B

N R

DECRIS-4

DECRIS-4 - a new injector of multiply charged ions for the U-400 cyclotron. The design of the magnetic structure of the source is based on the idea of the so-called "magnetic plateau". The axial magnetic field is formed by three independent solenoids enclosed in separated iron yokes. The superposition of the coils and hexapole magnetic fields creates <u>the resonance volume</u>.

R

b

n

B

Axial magnetic field distribution

Radial magnetic field distribution

FLNR Ion Sources Group

Structure of the DECRIS-4

DECRIS-4

9: Bias electrode. 10: Isolator

Main parameters UHF frequency 14 GHz **1.29 T 1.29 T** 29 cm Max. coil current 1000 A 15 bar Water cooling ΔP Plasma chamber Ø 74 mm Hexapole field on the wall of plasma >1.0 T chamber Max. extraction **30 kV** voltage

The whole magnetic structure is movable along the axis with respect to the plasma chamber to optimize the plasma electrode position during the source operation.

D u b n a

RESULTS

DECRIS-4

LNR Ion Sources Group ¹⁸

Production of ions of metals with an ECR ion sources

Many of the elements required for acceleration at the FLNR cyclotrons are available in the solid state form only.

Production of neutron reach light nuclei (6 He, 8 He,...)

Required beams -Li, B..

Synthesis of new super heavy nuclei

Required beams: ⁴⁸Ca-(0,19 %); ⁵⁰Ti - (5,2 %); ⁵⁸Fe-(0,3 %)

For the production of intense beams an expensive enriched isotopes are used

Efficiency of material consumption !!!

OVEN TECHNIQUE

T (°C)

R

U

Ø

n

8

Microoven: 1,2 - body, 3 - electrical connector, 4,5 - ceramic insulators, 6 – heater.

FLNR Ion Sources Group ²⁰

ECR ion sources: ionization efficiency for gases is high enough, $\sim 70 \div 80$ %. For metals the ionization efficiency is about 10 times smaller. The main part of the evaporated metal is condensed at the water-cooled plasma chamber wall.

Hot screen inside the discharge chamber!!.

R

U

Ø

n

B

U

Ø

n

B

Ions of solids, produced with microoven and hot screen

Ion	Maximal current, eµA	Average material consumption , mg/h
Li ²⁺	290	0,7 - 2
Mg ⁴⁺	300	2,45
⁴⁰ Ca ⁶⁺	120	0,8-1,0
Bi ¹⁹⁺	90	0,36

FLNR Ion Sources Group

22

Resistively heated screen in DECRIS-4 ion source

The heater is winded on a thin stainless steel cylinder and screened by the Ta foil outside. The heater itself consists of NiCr wire with a mineral insulation contained in a stainless steel tube. The thickness of the whole assembly is of about 2 mm.

Measured screen temperature vs electric power.

Ca ion spectra with resistively heated screen UHF power ≤ 100 W

MIVOC-method (<u>Metal Lons from VO</u>latile <u>C</u>ompounds)

- The vapour pressure of a compound should be about $\geq 10^{-3}$ torr at room temperature.
- Evaporation of a compound and its diffusion into the source take place without dissociation.
- The same feeding system as for gases is used.

 $B - C_2 B_{10} H_{12}$ $Ti - (CH_3)_5 C_5 Ti (CH_3)_3$ $Ti{OCH(CH_3)_2}_4$ Fe – **Fe**(C₅H₅)₂; $Ni - Ni(C_5H_5)_2; Cr - Cr(C_5H_5)_2$ $Cr - Cr(CO)_6$; $W - W(CO)_6$ U-400 – ⁵⁸Fe ⁷⁺ - 40÷50 µA Material consumption $\sim 3 \text{ mg/h}$ $(\sim 1.5 \text{ mg/h for } {}^{58}\text{Fe})$

The spectrum of boron ions Working substance - C₂ B₁₀ H₁₂

MIVOC-method (Titanium ions)

N R

U

Ø

n

B

DECRIS-SC ion sources.

D

U

b

Ŋ

B

Scaling laws: (1987 R. Geller) $\langle q \rangle \propto \log B_{max}$ $\langle q \rangle \propto \log B_{ECR}$ $I^q \propto \omega^2_{ECR}$

Semiempirical design criteria:

$$B_{inj} \sim 3 - 4 B_{ecr}$$

$$B_{rad} \geq 2 B_{ecr}$$

$$B_{min} \sim 0.5 - 0.8 B_{ecr}$$

f [GHz]	B [T]	$n_{ec} [cm^{-3}]$
2.45	0.0875	7.44×10 ¹⁰
6.4	0.23	5.08×10 ¹¹
10	0.36	1.24×10^{12}
14	0.5	2.43×10 ¹²
16	0.57	3.2×10 ¹²
18	0.64	4×10 ¹²
28	1	10 ¹³

ECR ion source with superconducting magnet system

Modernization of CI-100 cyclotron:

•accelerated ions - Kr¹⁵⁺, Xe²²⁺ energy 1 MeV/n

 Kr^{20+}, Xe^{30+} 2 MeV/n

• accelerated beam intensity $> 10^{12}$ pps

• The high enough requirements on charge and intensity of accelerated beams (Kr^{15+} , Xe^{22+}) demand the necessity of using the ion source with the large mirror ratio and a strong magnetic field.

"Liquid He free" technology

29

J J N R

Parameters of DECRIS-SC

UHF frequency	18 ÷ 28 GHz
Mirror field on the axis:Extraction sideInjection sideMirror to mirror distance	2 T 3 T 390 mm
Max. coil current	60 A
Radial field at the plasma chamber wall	1.3 T
Plasma chamber internal diameter	74 mm
Max. extraction voltage	30 kV

DECRIS-SC

The design of the SC magnet

1 - superconducting solenoids; 2 - framework of solenoids; 3 - thermal screen; 4 - multilayer screen-vacuum isolation; 6 - support of cold mass; 7 - vacuum casing; 8 magnetic shield; 9 current lead; 10 cryocooler; 11 - heat pipes; 12 - "cold" diodes; 13 - absorbing resistors; 15 - nitrogen heat exchanger.

Electrical power supply and safety system:

Passive protection: sectionalization, "cold" diodes and absorbing resistors. Active protection: three sensor units of the normal zone and eight resistive heaters, installed at the windings.

U

b

n

B

Thermo control:

DECRIS-SC

In the cold zone of the magnet 16 thermometers are located. Calibrated TVO carbon resistors are used as thermometers

N R

D

U

Ø

Ŋ

S

Solenoids: a Nb Ti/Cu monolithic superconducting wire (bare diameter - 0.65 mm, insulated diameter - 0.7 mm). Compounding of the windings is realized with prepreg. Each winding is made from a single piece of wire, without internal junctions, but electrically is divided into 2 or 3 sections. The coils are posed on the framework, made from non-magnetic stainless steel, which is free-floating fixed inside a vacuum casing with the help of glass textolite supports. (Cold mass ~ 280 kg)

 \mathbb{N}

R

D

U

b

Ŋ

B

Cold mass support consists of the glass textolite plates. The supports are designed to not only bear the weight of the cold mass but also to handle significant axial dynamic forces which can arise from unequal transitions of the windings during a quench. The supports are tested for durability using an axial load of 1,27 t and a radial load of 0,32 t.

D u b n a

DECRIS-SC

Cooling of the solenoids

With LN heat exchanger

With cryocooler only

⁵LNR Ion Sources Group ³⁸

Hexapole design

 \mathbb{N}

R

D

U

Ø

n

S

General view of the source

R

U

b

n

S

DECRIS-SC and axial injection system of CI-100 cyclotron

DECRIS-SC2 ion source for U-400M cyclotron

The main goal of the DECRIS-SC2 source is the production of more intense beams of heavy ions in the mass range heavier than Ar.

Table of main parameters.

Expected intensities: $Kr^{15+} \sim 100 e\mu A$, $Kr^{20+} \sim 10 e\mu A$, $Xe^{30+} \sim 5 e\mu A$

DECRIS-SC2 is the compact version of the "liquid He free" superconducting ion source. The axial magnetic field is created by superconducting coils and iron plugs. The radial magnetic field is formed by permanent magnet hexapole.

FLNR Ion Sources Group

Pumping

N R

D

U

b

Ŋ

S

D

U

b

n

B

Superconducting solenoid

Thermal screen

Components of DECRIS-SC2

Cold mass support

HTSC current lead

D U Ø Ŋ **S**

N R

 \mathbb{N}

First tests of the superconducting magnet system september 2008

Smooth energy variation in the range of 4,5÷5,5 MeV/n

n

B

D u b n a

Project of DECRIS-SC3 source for DC-350 cyclotron

Operating frequency – 18 GHz

Computational model of the magnet system

Superconducting magnet system for DECRIS-SC3

D U b n a

DRIBs (<u>D</u>ubna <u>R</u>adioactive *I*on Beam<u>s</u>) project

• First phase – production and acceleration of ⁶He и ⁸He beams.

• Second phase – production and acceleration of fission products (¹³²Sn).

J I N R

DRIBs - Project

Transformation of the primary beam into a low energy radioactive ion beam

D U b n a

Magnetic structure of ECR ion source for DRIBs (operating frequency 2.45 GHz)

FLNR Ion Sources Group ⁵⁷

ECR ion source for DRIBs

ECR ion source for DRIBs

Maximum extracted ⁴He ¹⁺ current and global efficiency versus the diameter of the extraction hole.

N R

U

Ø

Ŋ

B

Efficiency for Ar and Kr $\geq 80\%$

MASHA (Mass Analyzer of Super Heavy Atoms)

Mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu.

Ν

R

D

U

0

n

B

Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E = 40 kV and charge state Q = +1. The set up can work in the wide mass region from A~20 to A 500, mass acceptance $\pm 3\%$.

MASHA (Mass Analyzer of Super Heavy Atoms)

 \square

U

Ø

n

B

Magnetic structure of ECR ion source for MASHA

(operating frequency 2.45 GHz)

ECR ion source for MASHA

Ν R

B

Form1 🔽 Сумма Изот. ▼ AutoScale Mark 2.51 ٨ 1.51 D U 3.134 2.911 0.51 ¥ b n

Kr spectrum

