Status and Progress VEPP-2000

D.Berkaev for VEPP-2000 team, BINP,Novosibirsk

RUPAC-08, Zvenigorod. 28.09.08 - 3.10.08

OUTLINE

- VEPP-2M VEPP-2000
- E Round beams a way to increase luminosity.
- How to make beams round
- VEPP-2000 systems: magnets, RF, vacuum, control and diagnostics
- 😼 First beam
- Round beam
- 🖖 Beam-beam study
- Detectors CMD-3 and SND
- Physics at VEPP-2000
- 🕹 Conclusion

Overview of VEPP-2M results

Increasing of Luminosity

 $\xi_{\rm x.v} \ge 0.1$

Geometric factor (gain=4)
 Beam-beam limit enhancement

The Concept of Round Colliding Beams

- Angular momentum conservation!
- **\succeq** Small and equal β-functions at IP:
- **Equal beam emittances:**
- Equal betatron tunes:
- Small and positive fractional tunes

(V.V.Danilov et al., EPAC'96, Barcelona, p.1149, (1996))

 $\mathbf{M}_{\mathbf{z}} = \mathbf{x}'\mathbf{y} - \mathbf{x}\mathbf{y}'$

- $\beta_x = \beta_y$
- $\varepsilon_x = \varepsilon_y$
- $\nu_{\rm x} = \nu_{\rm y}$

Vertical size dependence on beam- beam parameter ξ

"Weak-Strong" Beam-Beam Simulations

"Strong-Strong" Beam-Beam Simulations

m size (

Main Parameters of VEPP-2000

Circumference	24.38 m
RF frequency	172 MHz
RF voltage	100 kV
RF harmonic number	14
Momentum compaction	0.036
Synchrotron tune	0.0035
Energy spread	6.4 x 10 ⁻⁴
Beam emittances (in the round mode)	1.29 x 10 ⁻⁷ m rad
Dimensionless damping decrements (x,y,s)	2.19 x 10 ⁻⁵ , 2.19 x 10 ⁻⁵ , 4.83 x 10 ⁻⁵
Betatron tunes	4.05, 2.05
Betatron functions at IP	10 cm
Number of bunches per beam	1
Number of particles per bunch	1 x 10 ¹¹
Beam-beam parameter (x,y)	0.075, 0.075
Luminosity per IP (at 1 GeV)	$1 \ge 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Cartoon of VEPP-2000 Collider

First "mile stones" of VEPP-2000 (14.05.2001)

Dipole Magnet (2.4 T)

Vacuum chamber and mirror

Single-Mode RF Cavity (172 MHz)

Solenoid 13.0 T

Solenoid 13.0 T at VEPP-2000

Solenoid Test

VEPP-2000 (10.01.07)

Beam in Transfer Line

Файл Окна Помощь

Ready

VEPP-2000 Lattice

First injection (RF "off")

CO and Beam Sizes

<u>File T</u>ools

(weak focusing)

X 9 Z X_Edit Z_Edit 💕 🗔 💢 Limit: 1 -0.8 X 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 0.08 0.94 0.02 0.09 0.32 0.94 -0.04 0.79 0.04 0.02 Sigma CMD 1M1 1M2 2M2 2M1 3M1 3M2 4M2 4M1 $^{0.8}_{0.6}$ 0.4 0.2 biid Nİ4 MK -0.2 ЫA -0.4 -0.6 -0.8 0.02 0.12 -0.16 0.18 0.24 0.24 -0.13 0.23 0.04 -0.10 0.05 Sigma -Limit: 1 E=508 MeV

Round beam operation

Orbit response matrices on dipole and quadrupole corrections + Singular values decomposition

Round beams (solenoid field 10 T)

positron beam

Round beam lattice

SND detector

1 – VEPP-2000 beam pipe, 2 – tracking system, 3 – aerogel cherenkov counter, 4 – Nal(TI) counters, 5 – vacuum phototriodes, 6 – absorber, 7-9 – muon system, 10 – VEPP-2000 s.c focusing solenoids.

- 1 Vacuum pipe
- 2 Drift chamber
- 3 BGO endcap calorimeter
- 4 Z-chamber

- 5 Superconducting solenoid
- 6 LXe calorimeter
- 7 Csl barrel calorimeter
- 8 Yoke

- 9 LHe supply
- 10 Vacuum pumpdown
- 11 VEPP2000 superconducting magnetic lenses

Physical program at VEPP-2000

- Precise measurement of the quantity
 - R= σ (e+e-->hadrons)/ σ (e+e--> μ + μ --)
- Study of hadronic channels: $e+e- > 2-3-4...(\pi,K,\eta)$.
 - Study of 'excited' vector mesons: ρ' , ρ'' , ω' , ϕ' ,...
- Weight CVC tests: comparison of e+e-- > hadr. (T=1) cross section with τ-decay spectra
- Study of nucleon-antinucleon pair production nucleon electromagnetic formfactors, search for NNbar resonances, ...
 Hadron production in 'radiative return' (ISR) processes
 Two photon physics
 Test of the QED high order processes 2->4,5

Conclusion

- **Beam** parameters of VEPP-2000 correspond to the project
- All systems of VEPP-2000 are working
- Vacuum life time exceeds 10 hours (I=1 mA)
- >> Round beam option was realized.
- ⓑ First beam-beam study is done: $\xi_{\text{lim}} ≈ .08$ is achieved
- Eurther beam-beam study will continue soon
- Detectors CMD-3 and SND are near to completion
- Experiments start in 2008
- Interesting physics can be done at VEPP-2000