Status of HIRFL-CSR

Youjin Yuan

Institute of Modern Physics (IMP)

RuPAC'08,Zvenigorod 9/29/2008

Brief introduction of CSR Project

Heavy-ion Cooler Storage Ring project Heavy-Ion Research Facilty in Lanzhou National Laboratory of Heavy-Ion Accelerators in Lanzhou

- 1993 Original idea
- 1996 Proposal
- 1998Approved
- 2000-2005 Construction
- 2006-2007 Commissioning

2008 Operating

Layout of HIRFL ECR+SFC+SSC+CSRm+CSRe complex

HIRFL-CSR

Main Physics Goals at HIRFL-CSR

- Nuclear Structure and Decay Property
- Heavy Element and New Nuclide Synthesis
- **EOS of Nuclear Matter**
- Hadron-Nucleon Physics in E <1.1 AGeV HI & <2.88GeV (3.7GeV/c) Proton</p>
- **High Charge State of Atomic Physics**
- Large Molecule Ions Fragmentation
- High Energy Density Physics
- >Nuclear Astrophysics
- Applications: Material, Biology, Cancer Therapy, Microelectronics and Space Industries

Superconducting ECR Source made in IMP

Results (eµA) at 18GHz SECRaL

¹⁶ O	6+	2300
	7+	810
⁴⁰ Ar	11+	810
	12+	510
	14+	270
	16+	73
	17+	8.5
¹²⁹ Xe	20 ⁺	505
	26+	410
	27+	306
	30+	101
	31+	68
⁴⁰ C a	16+	75
	19+	2.25
Pb	30 ⁺	90
	34+	18

SECRAL 37+ 5 2,4 38+

VECTOR FIELDS

Injector SFC (Sector Focus Cyclotron)

Many β-delayed new nuclei were synthesized at SFC

K ~ 69, R ~0.75 m, E ~10 MeV/u(C), 1 MeV/u(U), ε~20 π mm mrad, $\Delta P/P \sim \pm 0.5\%$

Injector SSC (Separated Sector Cyclotron) 82 shallow-seated tumor patients have been treated at SSC

K ~ 450, R ~3.2 m, E ~100 MeV/u(C), 10 MeV/u(U), ε~10 π mm mrad, $\Delta P/P \sim \pm 0.15\%$

CSRm Tunnel

2004 6 25

0 1

2004

2004 6 25

2004 6 25

CSRe Tunnel

e-cooler 300kV

Q:5T

41

RF

Internal-Target of CSRe

6/6: 711 0- (d C0.0 / - 107-

0

Radioactive Ion Beam Line between CSRm and CSRe

$\Delta P/P = \pm 1\%$, Emittance = 25π mm-mrad

RIBLL2 Tunnel

B:40T

CSRm Injection Schemes

C to Ar, A<40, E = 7~10 MeV/u SFC + CSRM Stripping Injection + E-cooling $\rightarrow \rightarrow I=10^{8-9}$

C to U, $E = 3 \sim 25 \text{ MeV/u}$ SFC + SSC + CSRm

Multiple Multi-turn Injection + E-cooling $\rightarrow \rightarrow I=10^{7-8}$

7AMeV→1AGeV (C⁶⁺) STI + Ramping in CSRm 06/10/24 05:19

Mode: SFC+CSRm, STI, $H = 2 \rightarrow 1$, $f_{rf} = 0.45 \rightarrow 1.63MHz$, G = 11.3Tm

06/12/27 08:15

C⁶⁺-7AMeV, observed the longitudinal Schottky signal from spectrum analyzer

C⁶⁺-600AMeV Ramping in CSRm^{7/09/29 06:25}

SFC-¹²C⁴⁺-7AMeV, I_{ini.}= 11uA, STI, 1800uA in 10s, 10000uA on top, 7 ×10⁹

MMI + Ramping (³⁶Ar¹⁸⁺-1AGeV) in CSRm Mode: SFC+SSC+CSRm, 4×10⁸ 07/12/10 00:08

MMI + Ramping (¹²⁹Xe²⁷⁺-235AMeV) in CSRm

07/06/25 07:20

Mode: SFC+CSRm, 1×10⁸, η =83%

Multi-time Injection for CSRe 1st Commissioning

Mode: SFC+CSRm+CSRe, STI, ¹²C⁶⁺-8GeV

07/10/23 12:18

Isochronous Mode in CSRe, $\Delta f/f \sim 10^{-7}$

³⁶Ar¹⁸⁺-368AMeV

07/12/08 22:44

MMI + Ramping (⁷⁸Kr²⁸⁺--4~204.7AMeV) in CSRm Mode: SFC+CSRm, 7×10⁷ 08/07/17 22:11

Multi-turns of ⁷⁸Kr³⁶⁺-404.5AMeV from BPM in CSRe TOF Target : In , Mode : Isochronous, 600 turns 08/07/17 22:11

Time/μs

Amplitude/V

Beam signal for slow extraction in CSRm

2008.01.10 15:00

Spill length: 1.2sMain frequency: 50Hz

Slow extraction for ¹²C⁴⁺-300MeV/u in CSRm

Status of Coolers in CSR Project

CSRm Cooler
 35kV←→60AMeV for accumulation
 CSRe Cooler
 300kV←→500AMeV for experiments

What we have done on CSRm Cooler • ${}^{12}C^{6+}$ 7MeV/u $U_{grid}/U_{anode} = 0.33$

$$^{12}C^{4+}$$
 7MeV/u $U_{grid}/U_{anode} = 0.2$

•
$${}^{36}\text{Ar}^{18+}$$
 22MeV/u $U_{\text{grid}}/U_{\text{anode}}=0.2$

•
$$^{129}Xe^{27+}$$
 2.9MeV/u $U_{grid}/U_{anode} = 0.2$

•
$${}^{12}C^{5+}$$
 8.26MeV/u $U_{grid}/U_{anode} = 0.2$

•
78
Kr²⁸⁺ 4.04MeV/u U_{grid}/U_{anode}=0.224

$$U_{control}/U_{anode} = 0.3/0.9 \, kV$$
 $U_{control}/U_{anode} = 0.2/0.9 \, kV$

Study of accumulating rate to bump amplitude

Study of accumulating rate to injection interval

Study of momentum spread of cooled beam

Parameters of Electron Cooler $I_{gun solenoid} = 690A(1380G)$ \bullet U_{grid}=0.18kV \bullet U_{anode}=0.81kV $I_{toroid} = 198A(375G)$ I_{main solenoid}=48A(375G) $\bullet U_{\text{grid}}/U_{\text{anode}}=0.222$ ● U_{HV}=3.890kV $U_{bending} = 380V$ I_{electron}=92mA

What we are doing on CSRm cooler

- Cooling time measurement
- Cooling force measurement
- BETACOOL simulation
- Electron Recombination

Study of cooling force for C and Ar

Study of cooling force for Ar with different e-currents

 $v_{electron-ion} / [m/s]$

Study of cooling force for Ar with different crossing angle

CSRe Cooler

 Reached 230kV, 300mA(400MeV/u)
 Electron beam position problem: electron beam is not parallel to ion beam presently

Other Tasks in Progress:

- External target
- Tumor Therapy study
- FAIR Project
- Upgrading of CSR project

External Target Experiments collaborated with several groups

Deep-seated Tumor Therapy at HIRFL-CSR

Treatment Ports (horizontal, vertical+horizontal)

相線深度

FAIR Project — Accelerator part

FAIR Project – Detectors part

Upgrade of HIRFL-CSR

Increasing beam intensity, beam species

Building hadron spectroscopy detector 1980s 2010s SSC SFC CSRe HILAC CSRm HPLUS Upgrade IH-Drift Tube Linac **_INAC**

Possible Future Projects:

- Facility of Heavy Ion Beam Application Research
- Compact Cancer Therapy Accelerator
 New facility in the future (2020-2035)

>New project was proposed (2011-2015)

Facility of Ion Application Research in Lanzhou

Compact facilities

for therapy centers in China Several in recent years are possible

p~Xe ions, C(430MeV/u) **Focused on: Cancer therapy** > Space industries ➢ Material sciences >Mutation breeding **≻**Beam analysis&imaging Total budget: 850 M¥

New facility in the future (2020-2035)

Facility of Ion, Electron and Beta Beams (FIEB2)

New Place for future facilities

Building national research center in Lanzhou

10 min by car from IMP

Thanks!

Renameration and the second