

The International Linear Collider From RDR to TDP

XXI. Russian Particle Accelerator
Conference Zvenigorod - September 29 to
October 3, 2008

Wilhelm Bialowons - GDE

Historical Background

- Over 15 years active international R&D
 - NLC & JLC based on (normal conducting)
 Cu X-band technology (11.4 GHz)
 - CLIC two-beam accelerator (30 GHz)
 - TESLA Superconducting RF (SCRF, 1.3 GHz)
- 2002 BMBF (German Funding agency) XFEL decision
 - Request to internationalize ILC effort
- 2004 ITRP recommends SCRF Linac Technology for the ILC
 - Recommendation later endorsed by ICFA
- 2005 Global Design Effort (GDE) formed

2006

ILC GDE: A Truly Global Effort

Global Design Effort

- 2005: Formation of the GDE by ICFA
 - Barry Barish director
- History
 - Dec 2005 Definition of baseline design
 - Dec 2006 Completion of conceptual design with cost estimate (including first iteration cost reduction)
 - Jul 2007 Publication of 4-volume <u>Reference Design Report</u> (RDR).
 - 2008 restructuring for <u>Technical</u> <u>Design Phase</u>

GDE Project Structure for TDP

Outline (1)

- Introduction
- RDR Machine Requirements
 - Overall Layout
 - Parameters
- Electron Source
- Positron Source
- Damping Rings
 - Kicker Systems
 - Electron Cloud (and Fast Ion Instability)
- Ring to Main Linac

Outline (2)

- Main Linac
 - Main Linac Unit
 - Cavities
 - Modulator
 - Klystron
 - Cryogenic System
- Beam Delivery System
- Value Estimate

Outline (3)

- TDP Technical Design Phase
 - GDE Time Line until 2012
 - TD Phase Project Structure
 - Plug compatibility for SCRF
 - Clustered surface RF
 - Minimum Machine Concept (Cost reduction)
 - Evaluation of the three sample sites
 - Investigation of (cut and cover) shallow sites
 - Investigation of generic site
- Summary and Outlook

ILC Reference Design Report

~700 Contributers from 84 Institutes

ILC-REPORT-2007-01
AAI-PUB-2007-002
CHEP A07-001 (CHEP/KNU)
CLNS 07/1991
Cockxroft-07-04
DESY 07-046
FERMILAB-TM-2382-AD-CD-DO-E-FESS-TD
JAI-2007-001
JINR Diebas-E9-2007-39
JLAB-R-2007-01
KEK Report 2007-1
LNF-07/9NT)
SLAC-R-857

INTERNATIONAL LINEAR COLLIDER

REFERENCE DESIGN REPORT

2007

APRIL, 2007

LIST OF CONTRIBUTORS

3.00pm, May 4, 2007

Gerald Aurons⁶⁰, David Adey⁶⁸, Chris Adolphsen⁶⁰, Ilya Agapov⁵⁸, Jung-Keun Ahn⁵⁶ Mitsuo Akemoto²⁴, Maria del Carmen Alaban²⁷, Michael Albrecht⁷⁹, David Alesini³⁸ Jim Alexander¹⁵, Wade Allison⁶¹, John Amann⁶⁰, Shozo Anami²⁴, Terry Anderson²¹ Michael Anerella³, Deepa Angal-Kalinin^{12,6}, Sergie Antipov², Claire Antoine^{8,23} Rob Appleby 12.76, Sakae Araki²⁴, Tug Arkan²¹, Ned Arnold², Ray Appold⁵⁰, Xavier Artru²⁸, Alexander Arysbev²⁴, Fred Asin¹⁰, David B. Augustfie²³, Detek Baars⁴⁵. Nigel Baddams¹¹, Ian R. Bailey^{12,75}, N. I. Balalykin³⁵, Jean-Luc Halig²¹, Maurice Balf²¹ Philip Bambade³⁷, Syuichi Ban²⁴, Karl Bane⁸⁰, Bakul Banerjee²¹, Sorena Barbanotti²⁷ Desmond P. Barber^{18,12,78}, D. Yu. Bardin³⁸, Barry Barish^{5,22}, Roger Barlow^{12,78} Maura Barone^{21,22}, Yuri Batygin⁶⁰, D. Elwyn Baynham², Cant Beard^{12,6}, LowBellamoni²¹ Paul Bellomo¹⁰, Lynn D. Bentson¹⁰, Martin Bernda¹⁰, Simona Betton¹², Vinod Bharadwa)¹⁰, Marica Biagim¹⁸, Wilhelm Badowone¹⁸, Thomas Biser¹⁶, John Bierwagen⁴⁶, Alison Birch^{12,6}, Victoria Blackmore¹⁸, Grahame Blair¹⁸, Christian Boffo²¹, Courtlandt Bohn⁵⁰, V. I. Boiko³⁰, Bluard N. Bondarchuk¹⁰ Roberto Boni¹⁸, Stewart Boogert⁵⁸, Gary Boorman⁵⁰, Alemio Bosco⁵⁸, Pierre Bosland⁸, Angelo Bosctti²⁷, Gordon Bowlen⁶⁰, Gary Bower⁶⁸, Anel Brachmann⁶ Tom W. Bradshaw¹, Hans Peter Brance¹, James Brau¹⁰, Steve Bricker⁴⁵, Craig Brooksly⁴, Timothy A. Boconic, James B. Bran "Steve Birchen",
Heiner Brueck¹⁸, Amanda J. Brammink⁷, Yu. A. Bridgov¹⁸, Karsten Bocosce¹⁸,
Eugene Bulyak¹⁸, Adriana Bungan^{13,19}, Craig Burkhart¹⁹, Philip Burrows¹⁸,
Graene Burt¹, David Burron^{14,8}, Yunhai Cal¹⁹, Ofelia Capstinat¹, Ruben Carougno²¹,
F. Stephen Carr⁷, Harry F. Cartec¹⁸, John Cartec¹⁹, John Carwardine², Richard Cassel¹⁹. Giorgio Cavallari*/Brian Chaser Robert Chebab T, Stephane Chef*, Chiping Chen44, Jian Cheng³¹, M. Chevallier^a, William Chackering²⁰, Jin-byuk Chol³¹, Glenn Christian⁴⁴, Mike Caurch²¹, Gianlaigi Ciovati²², Christine Clarke³¹, Don G. Clarke³, James A. Clarke^{31,6}, Elizabeth Clements^{21,22}, Paul Coe³¹, John Cogan⁴⁰, Chris Compton⁴⁷ Ed Cook⁴¹, Peter Cooke^{12,75}, Laura Corner⁸¹, Clay Corvin⁶⁰, Curtis Crawford¹⁵ James A. Crittenden B. Hamid Dabiri Khah⁸¹, Olivier Dadoun F. Chris Damerell T. Michael Danilov²², Ken P. Davies⁶, Antonio de Lira⁶⁰, Stefano De Santis⁶⁰, Laurence Discout⁵⁸, Jeag-Pierre Delahaye¹¹, Nicholas Delerue⁸¹, Olivier Delferriere⁸ Yu. N. Deniste, Christopher J. Densham⁷, Guillaume Devana⁸, Amos Dexter¹² Sudhir Dixit 11, Ralph Dollan 21, George Doncas 11, Robert Downing 57, Eric Doyle 10, Alessandro-Deago³⁸, Alex Deagt²⁷, Alexandr Droztdin²¹, Gerald Dugan¹⁵, Viktor Duginov³⁵, Helen Edwards²⁷, Heiko Ehrichmann²⁸, Michael Ehrichman²⁸ Peder Eliassou¹¹, George Ellwood^{12,6}, Eckhard Elsen¹⁸, Louis Emery², Kazuhiro Enami²⁴ Kuninori Endo²⁴, Atsushi Enomoto²⁸, Fahien Eosénou⁸, Roger Erickson⁶⁰, Karen Fant⁶⁰ Alberto Fasso⁶⁰, John Fehiberg⁵⁴, John Ferguson¹¹, J. Luis Fernandez-Hernando^{12,6} Ted Fieguth⁶⁰, Mike D. Fitton⁷, Mike Foley²¹, Richard Ford²¹, Brian Foster⁸¹ Horst Friedman², Josef Frisch⁶⁰, Joel Forest², Masafumi Fukudn²⁴, Shigeki Fukudn²⁴, Yoshisato Funshashi²⁴, Warren Funk⁶², Kazuro Furukawa²⁴, Funio Furuta²⁴ Karsten Gadow¹⁸, Wei Gai², Fred Gannaway⁸¹, Jie Gao³¹, Peter Garbincius²¹ Luis Garcia-Tabores¹⁰, Terry Garvey²⁷, Edward Garwin⁶⁰, Martin Gastal¹³, Lixin Ge⁶⁰ Zheqiao Geng^M, Scott Gerbick², Rod Gerig², Lawrence Gibbons¹⁵, Allan Gillespie⁷²,

ii ILC-Reference Design Report

http://www.linearcollider.org

What's RDR

- (International) Conceptual design report
- With first-stage (reliable) cost (value & labor) estimation
- Engineering details not yet contained
- Not all based on the present technology
 - Forward-looking
 - R&D needed
- History
 - BCD (Baseline Configuration Document) published in December 2005 at Frascati meeting
 - Rules for cost estimation established in March 2006 at Bangalore meeting
 - First cost compilation in July 2006 at Vancouver meeting Cost reduction effort started
 - RDR draft published in February 2007 at Beijing meeting

ILCSC Parameters Group: Requirements

- Center-of-Mass Energy up to 500 GeV
 - upgradeable to 1 TeV.
- Integrated luminosity in the first 4 years
 - $> 500 \text{ fb}^{-1} (500 \text{ GeV equivalent})$
 - This corresponds to the peak luminosity ~ 2x10³⁴ cm⁻²s⁻¹
 - Assume $1/\gamma$ L scaling for < 500 GeV
- Ability of energy scan in 200 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80 %
- Two detectors
 - Single IR in push-pull configuration

The ILC Reference Design

1st Stage: 200 - 500 GeV, Based on accelerating gradient of 31.5 MV/m (1.3 GHz SCRF)

Basic Global Parameters

Max. Center-of-mass energy	500	GeV
Peek Luminosity	~2x10 ³⁴	cm ⁻² s ⁻¹
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

Electron Source System

Positron Source

- Undulator scheme
 - Electron beam at 150 GeV

Undulator

- Helical, superconducting
- length 147 m (longer for polarized e+)
- K = 0.92, $\lambda = 1.15$ cm, (B = 0.86 T)
- Needs 'keep-alive source'
 - 10 % intensity
 - Share 5 GeV linac

Damping Rings

- Roles
 - Reduce transverse/longitudinal emittances
 - Beam stabilization
- Possible choices
 - Dog-bone
 - (nearly) Circular: ~ 3 km, ~ 6 km
- Baseline
 - 6.7 km circular ring
 - One for e+ and one for e-

Kicker System

Must extract bunches one-by-one

Specification

- rise, fall time < 3 ns</p>
- rep.rate 5.5 MHz
- pulse length 1ms
- stability < 0.1 %
 - can be relaxed by feedforward
- Fast kicker needed
 - A system with fast pulser and stripline developed at KEK.
 - Unit test done.

RTML

- ~14 km long transport
- Turn-around
 - needed also for feed-forward
- Spin Rotator
- Bunch compressor in 2 stages
 - − 9 mm \rightarrow 300 μ m (nominal parameters)
 - 9 mm → 200 μm possible (Low Q parameters)
- Diagnostics and collimators

Main Linac Layout

- Length ~ 11 km x 2
- Average gradient 31.5 MV/m
- 2 tunnels diameter 4.5 m

Penetrations: Cable & Plumbing Waveguide

LLRF, Controls, Protection Racks

Charger

Main Modulator

HV Pulse Transformer

Horizontal Klystron

- LCW Chiller

AC Switchgear

Waveguide Distribution System

Dwg: J. Liebfritz

Main Linac RF Unit Overview

- Bouncer type modulator
- Multibeam klystron (10 MW, 1.6 ms)
- 3 Cryostats (9+8+9 = 26 cavities)
- 1 Quadrupole at the center

Cavities

- Baseline: TESLA-type 1.3 GHz
 - Identical to XFEL cavities
 - Only beamtubes shortened
- Accelerating gradient
 - Vertical test
 - $> 35 \text{ MV/m}, Q > 0.8 \times 10^{10}$
 - Average gradient in cryomodule
 - 31.5 MV/m, $Q > 1x10^{10}$
- With the presently available technology
 - Average gradient lower than 31.5 MV/m
 - Spread of gradient large
 - If uniform distribution in 22<G<34 MV/m, average 28 MV/m
 - Cost increase ~ 7 %

Accelerator Module Operational Gradients

ilc

Modulator

Baseline

- Bouncer-type modulator
 - Design at FNAL
 - Has been working for >10 years at TTF at DESY
 - No major technical issues
 - XFEL choice
- Design improvements (within XFEL industrialisation)
 - More cost-efficient design under way
 - Redundancy of internal components for higher availability

Alternative:

- Marx Modulator
 - Under development at SLAC
 - Smaller size
 - No step-up transformer
 - Potentially high cost saving

Klystrons

- Requirements:
 - 10 MW
 - 1.6 ms
 - 5 Hz
 - lifetime for full power >40000 hrs
- Baseline solution: Multi-beam klystron
 - Use multiple beams of low charge
 - Lower space-charge effects
 - Lower voltage (120 kV)
 - Higher efficiency (~65 %)
- Prototypes from 3 manufacturers for the European XFEL (higher repetition rate: 10 Hz)
 - Thales and Toshiba MBKs being successfully tested at DESY at full spec
 - for > 1000 hrs
 - · Several klystrons under varying operating conditions at FLASH, PITZ and test stand
- Horizontally mounted klystron needed for small tunnel diameter
 - XFEL develops this with industry
- More lifetime testing going on (eventually also at SLAC)
 - At DESY all tubes which are now in operation do not show signs of degradation (no arcing, no perveance drops)

Thales

Toshiba

Cryogenics System

- 1 cryogenic plant covers 2.5 km linac length.
 - Installed power ~ 4.5 MW
- Total 10 plants
 - ~ 45 MW
 - comparable to LHC cryogenics system

BDS

- Single IR and pushpull detector
- Total length 4.45 km
- 1 TeV upgrade by inserting some components (no geometry change)

ilr

Layout of BDS+DR

Layout of Detector Hall Complex

Detector Hall, Service Cavern, Access Shafts and Surface Buildings Plan View and Sections

Scale of International Linear Collider

- 16,088 SC Cavities: 9 cell, 1.3 GHz
- 1848 CryoModules: 2/3 containing 9 cavities,
 - 1/3 with 8 cavities + Quad/Correctors/BPM
- 613 RF Units: 10 MW klystron, modulator, RF distribution
- 72.5 km tunnels ~ 100-150 meters underground
- 13 major shafts \geq 9 meter diameter
- 443 k cu. m. underground excavation: caverns, alcoves, halls
- 10 Cryogenic plants, 20 KW @ 4.5° K each
 - plus smaller cryo plants for e-/e+ (1 each), DR (2), BDS (1)
- 92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft total
- 240 M Watts connected power, 345 MW installed capacity
- 13,200 magnets 18 % superconducting

Total ILC Value and Explicit Manpower

Total ILC Value Cost ILCU* 6.62 B

ILCU 4.79 B shared + ILCU 1.83 B <site specific>#

plus 14.2 k person-years Explicit Manpower

= 24.2 M person-hours

@ 1,700 person-hr/person-yr

*ILCU(nit) = \$ (January 2, 2007)

#<site specific> = average of the three site specific costs

ILC Value – by Area Systems

ILC Value – by Technical Systems

The GDE Post-RDR

- Publication of the RDR was a major milestone
- Analysis of the RDR design/cost → priorities for Technical Design Phase
- Re-structuring of GDE into a more traditional Project Structure
 - Hierarchal org. chart
 - Project Management Team
- Focus of TDP work:
 - Risk mitigating R&D
 - Overall Cost Reduction / Containment (optimisation)
 - Project Implementation Plan (PIP)

GDE Time Line until 2012

- Updated technical design

authorities/agencies

- Updated VALUE estimate
- Project Implementation Plan
- (Updated physics case [LHC])

LHC physics

Submission

TD Phase Project Structure

Plug Compatibility for SCRF

Cavity

Cavity			
Cavity	Plug-compatibility	Can be flexible	Alternate design
	Standard	R&D remain	need to fit to
Material		large/fine grain	
Shape		TESLA/LL/RE	
Length	1,247		
Beam pipe dia.	78 mm		(80 mm)
Beam pipe seal	Al-hex,		(In, Helicoflex)
Jacket/cone	NbTi / Ti		SUS
He-vessel OD	XXX		
Tuner type		Blade / slide-jack	
Tuner slow	Control/wiring spec.		
Tuner fast (piezo)	Control/wiring spec.		
Mag. shield		Inside / outside	
Coupler position	e-: downstream-end		
	e+: upstream end		
Type	Fixed/tunable		000
Diameter (cold)			A 300
(warm)			
High pr. code			
Design pressure	2 bar (delta-P)		
Material	Nb, SUS	NbTi, Ti,	

Layout Clustered Surface RF

Combine 300 MW from thirty 10 MW klystrons into one circular TE₀₁-mode evacuated waveguide on the surface. With extra transmission losses one shaft serves ~2 km.

37.956 m

Minimum Machine Concepts

- Removal of service tunnel
 - XFEL-like solution
 - Surface klystron solutions
- Integration of e+/e- sources with upstream beam delivery system (same tunnel)
 - Move e+ undulator source to end of linac (250 GeV point)
 - e- source and 5 GeV injector linacs share BDS tunnel
- 3. Main Linac Novel high-power RF distribution
 - "klystron-clusters" on surface (30 klystrons/cluster)
 - 300 MW "pipe" distribution over 1 km using over-moded waveguide
 - (single tunnel solution)
- 4. Main Linac adoption of Marx modulator
- 5. Reduced beam-power parameter set
 - Half klystron/modulators
 - 6km → 3km damping ring
- 6. Two-stage → single-stage bunch compressor
- 7. Remove all support for TeV upgrade
 - Mostly impacts BDS

Potential cost savings primarily via reduced CFS requirements

FP7 WP 5: European Siting Study

SEVENTH FRAMEWORK PROGRAMME RESEARCH INFRASTRUCTURES Construction of new infrastructures – preparatory phase

Combination of Collaborative Project and Coordination and Support Action

ILC-HiGrade

International Linear Collider and High Gradient Superconducting RF-Cavities

www.ilc-higrade.eu

Grant agreement number 206711

Annex I - "Description of Work"

Three Regional Sample Sites

- Only one LC will be constructed in the world
- In the RDR are deep site proposals in the three regions namely in Japan, Illinois and at CERN. (The design is optimized for deep tunnels.)
- Their benefits will be evaluated
- ILC-HiGrade encompasses the European side of the endeavour
- The organization to allow site development and selection must be specified
- Site choice has to be technically prepared

Basis of CFS Cost Estimates

- 1.) Cost represent the final construction contract cost.
- 2.) Costs are based on the estimates established for the VLCW06 meeting
- 3.) The dimensions of the small excavation (3M x 3M) requires labor intensive small hand held equipment and / or small inefficient machines for a drill and blast excavation. The size of tunnel needed to use efficient mechanized machines for drill an
- 4.) All values are in \$USD.

TESLA Site at DESY in HH

Sketch of the TESLA Tunnel (TDR)

Potential ILC Site at Dubna in Russia

Siting Studies in Europe

The Joint Institute of Nuclear Research (JINR) in Dubna has proposed a site near their institute, south of the Volga river. That proposal comprises a machine close to the surface but constructed using tunnel-boring machines. Sufficient power from the Russian national grid is available. The project will assess the potential of such a site and conclude on the benefits and risks.

General Layout of the Site Near Dubna

Geological Cut of the Dubna Sample Site

Summary and Outlook

- Reference Design Report published in August 2007
 - Consistent design, though details are still lacking
 - Significant cost savings since the original version of BCD (Dec 2005)
 - Physics scope not reduced (energy, luminosity)
 - Risk assessments underway
- R&D and engineering design issues still remain
 - The next document will contain much more technical detail:
 Technical Design Phase Report due 2010 / 2012
- The XFEL (with significant Russian contribution) is a very important stepping stone towards the ILC!