The International Linear Collider From RDR to TDP XXI. Russian Particle Accelerator Conference Zvenigorod - September 29 to October 3, 2008 Wilhelm Bialowons - GDE ## Historical Background - Over 15 years active international R&D - NLC & JLC based on (normal conducting) Cu X-band technology (11.4 GHz) - CLIC two-beam accelerator (30 GHz) - TESLA Superconducting RF (SCRF, 1.3 GHz) - 2002 BMBF (German Funding agency) XFEL decision - Request to internationalize ILC effort - 2004 ITRP recommends SCRF Linac Technology for the ILC - Recommendation later endorsed by ICFA - 2005 Global Design Effort (GDE) formed 2006 ## ILC GDE: A Truly Global Effort ## Global Design Effort - 2005: Formation of the GDE by ICFA - Barry Barish director - History - Dec 2005 Definition of baseline design - Dec 2006 Completion of conceptual design with cost estimate (including first iteration cost reduction) - Jul 2007 Publication of 4-volume <u>Reference Design Report</u> (RDR). - 2008 restructuring for <u>Technical</u> <u>Design Phase</u> ## GDE Project Structure for TDP ## Outline (1) - Introduction - RDR Machine Requirements - Overall Layout - Parameters - Electron Source - Positron Source - Damping Rings - Kicker Systems - Electron Cloud (and Fast Ion Instability) - Ring to Main Linac ## Outline (2) - Main Linac - Main Linac Unit - Cavities - Modulator - Klystron - Cryogenic System - Beam Delivery System - Value Estimate ## Outline (3) - TDP Technical Design Phase - GDE Time Line until 2012 - TD Phase Project Structure - Plug compatibility for SCRF - Clustered surface RF - Minimum Machine Concept (Cost reduction) - Evaluation of the three sample sites - Investigation of (cut and cover) shallow sites - Investigation of generic site - Summary and Outlook ## ILC Reference Design Report #### ~700 Contributers from 84 Institutes ILC-REPORT-2007-01 AAI-PUB-2007-002 CHEP A07-001 (CHEP/KNU) CLNS 07/1991 Cockxroft-07-04 DESY 07-046 FERMILAB-TM-2382-AD-CD-DO-E-FESS-TD JAI-2007-001 JINR Diebas-E9-2007-39 JLAB-R-2007-01 KEK Report 2007-1 LNF-07/9NT) SLAC-R-857 INTERNATIONAL LINEAR COLLIDER REFERENCE DESIGN REPORT 2007 **APRIL, 2007** #### LIST OF CONTRIBUTORS 3.00pm, May 4, 2007 Gerald Aurons⁶⁰, David Adey⁶⁸, Chris Adolphsen⁶⁰, Ilya Agapov⁵⁸, Jung-Keun Ahn⁵⁶ Mitsuo Akemoto²⁴, Maria del Carmen Alaban²⁷, Michael Albrecht⁷⁹, David Alesini³⁸ Jim Alexander¹⁵, Wade Allison⁶¹, John Amann⁶⁰, Shozo Anami²⁴, Terry Anderson²¹ Michael Anerella³, Deepa Angal-Kalinin^{12,6}, Sergie Antipov², Claire Antoine^{8,23} Rob Appleby 12.76, Sakae Araki²⁴, Tug Arkan²¹, Ned Arnold², Ray Appold⁵⁰, Xavier Artru²⁸, Alexander Arysbev²⁴, Fred Asin¹⁰, David B. Augustfie²³, Detek Baars⁴⁵. Nigel Baddams¹¹, Ian R. Bailey^{12,75}, N. I. Balalykin³⁵, Jean-Luc Halig²¹, Maurice Balf²¹ Philip Bambade³⁷, Syuichi Ban²⁴, Karl Bane⁸⁰, Bakul Banerjee²¹, Sorena Barbanotti²⁷ Desmond P. Barber^{18,12,78}, D. Yu. Bardin³⁸, Barry Barish^{5,22}, Roger Barlow^{12,78} Maura Barone^{21,22}, Yuri Batygin⁶⁰, D. Elwyn Baynham², Cant Beard^{12,6}, LowBellamoni²¹ Paul Bellomo¹⁰, Lynn D. Bentson¹⁰, Martin Bernda¹⁰, Simona Betton¹², Vinod Bharadwa)¹⁰, Marica Biagim¹⁸, Wilhelm Badowone¹⁸, Thomas Biser¹⁶, John Bierwagen⁴⁶, Alison Birch^{12,6}, Victoria Blackmore¹⁸, Grahame Blair¹⁸, Christian Boffo²¹, Courtlandt Bohn⁵⁰, V. I. Boiko³⁰, Bluard N. Bondarchuk¹⁰ Roberto Boni¹⁸, Stewart Boogert⁵⁸, Gary Boorman⁵⁰, Alemio Bosco⁵⁸, Pierre Bosland⁸, Angelo Bosctti²⁷, Gordon Bowlen⁶⁰, Gary Bower⁶⁸, Anel Brachmann⁶ Tom W. Bradshaw¹, Hans Peter Brance¹, James Brau¹⁰, Steve Bricker⁴⁵, Craig Brooksly⁴, Timothy A. Boconic, James B. Bran "Steve Birchen", Heiner Brueck¹⁸, Amanda J. Brammink⁷, Yu. A. Bridgov¹⁸, Karsten Bocosce¹⁸, Eugene Bulyak¹⁸, Adriana Bungan^{13,19}, Craig Burkhart¹⁹, Philip Burrows¹⁸, Graene Burt¹, David Burron^{14,8}, Yunhai Cal¹⁹, Ofelia Capstinat¹, Ruben Carougno²¹, F. Stephen Carr⁷, Harry F. Cartec¹⁸, John Cartec¹⁹, John Carwardine², Richard Cassel¹⁹. Giorgio Cavallari*/Brian Chaser Robert Chebab T, Stephane Chef*, Chiping Chen44, Jian Cheng³¹, M. Chevallier^a, William Chackering²⁰, Jin-byuk Chol³¹, Glenn Christian⁴⁴, Mike Caurch²¹, Gianlaigi Ciovati²², Christine Clarke³¹, Don G. Clarke³, James A. Clarke^{31,6}, Elizabeth Clements^{21,22}, Paul Coe³¹, John Cogan⁴⁰, Chris Compton⁴⁷ Ed Cook⁴¹, Peter Cooke^{12,75}, Laura Corner⁸¹, Clay Corvin⁶⁰, Curtis Crawford¹⁵ James A. Crittenden B. Hamid Dabiri Khah⁸¹, Olivier Dadoun F. Chris Damerell T. Michael Danilov²², Ken P. Davies⁶, Antonio de Lira⁶⁰, Stefano De Santis⁶⁰, Laurence Discout⁵⁸, Jeag-Pierre Delahaye¹¹, Nicholas Delerue⁸¹, Olivier Delferriere⁸ Yu. N. Deniste, Christopher J. Densham⁷, Guillaume Devana⁸, Amos Dexter¹² Sudhir Dixit 11, Ralph Dollan 21, George Doncas 11, Robert Downing 57, Eric Doyle 10, Alessandro-Deago³⁸, Alex Deagt²⁷, Alexandr Droztdin²¹, Gerald Dugan¹⁵, Viktor Duginov³⁵, Helen Edwards²⁷, Heiko Ehrichmann²⁸, Michael Ehrichman²⁸ Peder Eliassou¹¹, George Ellwood^{12,6}, Eckhard Elsen¹⁸, Louis Emery², Kazuhiro Enami²⁴ Kuninori Endo²⁴, Atsushi Enomoto²⁸, Fahien Eosénou⁸, Roger Erickson⁶⁰, Karen Fant⁶⁰ Alberto Fasso⁶⁰, John Fehiberg⁵⁴, John Ferguson¹¹, J. Luis Fernandez-Hernando^{12,6} Ted Fieguth⁶⁰, Mike D. Fitton⁷, Mike Foley²¹, Richard Ford²¹, Brian Foster⁸¹ Horst Friedman², Josef Frisch⁶⁰, Joel Forest², Masafumi Fukudn²⁴, Shigeki Fukudn²⁴, Yoshisato Funshashi²⁴, Warren Funk⁶², Kazuro Furukawa²⁴, Funio Furuta²⁴ Karsten Gadow¹⁸, Wei Gai², Fred Gannaway⁸¹, Jie Gao³¹, Peter Garbincius²¹ Luis Garcia-Tabores¹⁰, Terry Garvey²⁷, Edward Garwin⁶⁰, Martin Gastal¹³, Lixin Ge⁶⁰ Zheqiao Geng^M, Scott Gerbick², Rod Gerig², Lawrence Gibbons¹⁵, Allan Gillespie⁷², ii ILC-Reference Design Report http://www.linearcollider.org #### What's RDR - (International) Conceptual design report - With first-stage (reliable) cost (value & labor) estimation - Engineering details not yet contained - Not all based on the present technology - Forward-looking - R&D needed - History - BCD (Baseline Configuration Document) published in December 2005 at Frascati meeting - Rules for cost estimation established in March 2006 at Bangalore meeting - First cost compilation in July 2006 at Vancouver meeting Cost reduction effort started - RDR draft published in February 2007 at Beijing meeting # ILCSC Parameters Group: Requirements - Center-of-Mass Energy up to 500 GeV - upgradeable to 1 TeV. - Integrated luminosity in the first 4 years - $> 500 \text{ fb}^{-1} (500 \text{ GeV equivalent})$ - This corresponds to the peak luminosity ~ 2x10³⁴ cm⁻²s⁻¹ - Assume $1/\gamma$ L scaling for < 500 GeV - Ability of energy scan in 200 500 GeV - Energy stability and precision below 0.1% - Electron polarization of at least 80 % - Two detectors - Single IR in push-pull configuration ## The ILC Reference Design 1st Stage: 200 - 500 GeV, Based on accelerating gradient of 31.5 MV/m (1.3 GHz SCRF) ### **Basic Global Parameters** | Max. Center-of-mass energy | 500 | GeV | |-------------------------------|---------------------|----------------------------------| | Peek Luminosity | ~2x10 ³⁴ | cm ⁻² s ⁻¹ | | Beam Current | 9.0 | mA | | Repetition rate | 5 | Hz | | Average accelerating gradient | 31.5 | MV/m | | Beam pulse length | 0.95 | ms | | Total Site Length | 31 | km | | Total AC Power Consumption | ~230 | MW | ## Electron Source System ### **Positron Source** - Undulator scheme - Electron beam at 150 GeV #### Undulator - Helical, superconducting - length 147 m (longer for polarized e+) - K = 0.92, $\lambda = 1.15$ cm, (B = 0.86 T) - Needs 'keep-alive source' - 10 % intensity - Share 5 GeV linac ## **Damping Rings** - Roles - Reduce transverse/longitudinal emittances - Beam stabilization - Possible choices - Dog-bone - (nearly) Circular: ~ 3 km, ~ 6 km - Baseline - 6.7 km circular ring - One for e+ and one for e- ## Kicker System Must extract bunches one-by-one #### Specification - rise, fall time < 3 ns</p> - rep.rate 5.5 MHz - pulse length 1ms - stability < 0.1 % - can be relaxed by feedforward - Fast kicker needed - A system with fast pulser and stripline developed at KEK. - Unit test done. #### RTML - ~14 km long transport - Turn-around - needed also for feed-forward - Spin Rotator - Bunch compressor in 2 stages - − 9 mm \rightarrow 300 μ m (nominal parameters) - 9 mm → 200 μm possible (Low Q parameters) - Diagnostics and collimators ## Main Linac Layout - Length ~ 11 km x 2 - Average gradient 31.5 MV/m - 2 tunnels diameter 4.5 m Penetrations: Cable & Plumbing Waveguide LLRF, Controls, Protection Racks Charger Main Modulator **HV Pulse Transformer** Horizontal Klystron - LCW Chiller AC Switchgear Waveguide Distribution System Dwg: J. Liebfritz #### Main Linac RF Unit Overview - Bouncer type modulator - Multibeam klystron (10 MW, 1.6 ms) - 3 Cryostats (9+8+9 = 26 cavities) - 1 Quadrupole at the center #### **Cavities** - Baseline: TESLA-type 1.3 GHz - Identical to XFEL cavities - Only beamtubes shortened - Accelerating gradient - Vertical test - $> 35 \text{ MV/m}, Q > 0.8 \times 10^{10}$ - Average gradient in cryomodule - 31.5 MV/m, $Q > 1x10^{10}$ - With the presently available technology - Average gradient lower than 31.5 MV/m - Spread of gradient large - If uniform distribution in 22<G<34 MV/m, average 28 MV/m - Cost increase ~ 7 % # Accelerator Module Operational Gradients # ilc #### Modulator #### Baseline - Bouncer-type modulator - Design at FNAL - Has been working for >10 years at TTF at DESY - No major technical issues - XFEL choice - Design improvements (within XFEL industrialisation) - More cost-efficient design under way - Redundancy of internal components for higher availability #### Alternative: - Marx Modulator - Under development at SLAC - Smaller size - No step-up transformer - Potentially high cost saving ## **Klystrons** - Requirements: - 10 MW - 1.6 ms - 5 Hz - lifetime for full power >40000 hrs - Baseline solution: Multi-beam klystron - Use multiple beams of low charge - Lower space-charge effects - Lower voltage (120 kV) - Higher efficiency (~65 %) - Prototypes from 3 manufacturers for the European XFEL (higher repetition rate: 10 Hz) - Thales and Toshiba MBKs being successfully tested at DESY at full spec - for > 1000 hrs - · Several klystrons under varying operating conditions at FLASH, PITZ and test stand - Horizontally mounted klystron needed for small tunnel diameter - XFEL develops this with industry - More lifetime testing going on (eventually also at SLAC) - At DESY all tubes which are now in operation do not show signs of degradation (no arcing, no perveance drops) Thales Toshiba ## Cryogenics System - 1 cryogenic plant covers 2.5 km linac length. - Installed power ~ 4.5 MW - Total 10 plants - ~ 45 MW - comparable to LHC cryogenics system #### **BDS** - Single IR and pushpull detector - Total length 4.45 km - 1 TeV upgrade by inserting some components (no geometry change) # ilr ## Layout of BDS+DR ## Layout of Detector Hall Complex ## Detector Hall, Service Cavern, Access Shafts and Surface Buildings Plan View and Sections ## Scale of International Linear Collider - 16,088 SC Cavities: 9 cell, 1.3 GHz - 1848 CryoModules: 2/3 containing 9 cavities, - 1/3 with 8 cavities + Quad/Correctors/BPM - 613 RF Units: 10 MW klystron, modulator, RF distribution - 72.5 km tunnels ~ 100-150 meters underground - 13 major shafts \geq 9 meter diameter - 443 k cu. m. underground excavation: caverns, alcoves, halls - 10 Cryogenic plants, 20 KW @ 4.5° K each - plus smaller cryo plants for e-/e+ (1 each), DR (2), BDS (1) - 92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft total - 240 M Watts connected power, 345 MW installed capacity - 13,200 magnets 18 % superconducting ## Total ILC Value and Explicit Manpower ## Total ILC Value Cost ILCU* 6.62 B ILCU 4.79 B shared + ILCU 1.83 B <site specific># plus 14.2 k person-years Explicit Manpower = 24.2 M person-hours @ 1,700 person-hr/person-yr *ILCU(nit) = \$ (January 2, 2007) #<site specific> = average of the three site specific costs ## ILC Value – by Area Systems ## ILC Value – by Technical Systems ## The GDE Post-RDR - Publication of the RDR was a major milestone - Analysis of the RDR design/cost → priorities for Technical Design Phase - Re-structuring of GDE into a more traditional Project Structure - Hierarchal org. chart - Project Management Team - Focus of TDP work: - Risk mitigating R&D - Overall Cost Reduction / Containment (optimisation) - Project Implementation Plan (PIP) ### GDE Time Line until 2012 - Updated technical design authorities/agencies - Updated VALUE estimate - Project Implementation Plan - (Updated physics case [LHC]) LHC physics **Submission** ## TD Phase Project Structure ## Plug Compatibility for SCRF Cavity | Cavity | | | | |--------------------|----------------------|--------------------|------------------| | Cavity | Plug-compatibility | Can be flexible | Alternate design | | | Standard | R&D remain | need to fit to | | Material | | large/fine grain | | | Shape | | TESLA/LL/RE | | | Length | 1,247 | | | | Beam pipe dia. | 78 mm | | (80 mm) | | Beam pipe seal | Al-hex, | | (In, Helicoflex) | | Jacket/cone | NbTi / Ti | | SUS | | He-vessel OD | XXX | | | | Tuner type | | Blade / slide-jack | | | Tuner slow | Control/wiring spec. | | | | Tuner fast (piezo) | Control/wiring spec. | | | | Mag. shield | | Inside / outside | | | Coupler position | e-: downstream-end | | | | | e+: upstream end | | | | Type | Fixed/tunable | | 000 | | Diameter (cold) | | | A 300 | | (warm) | | | | | High pr. code | | | | | Design pressure | 2 bar (delta-P) | | | | Material | Nb, SUS | NbTi, Ti, | | | | | | | ## Layout Clustered Surface RF Combine 300 MW from thirty 10 MW klystrons into one circular TE₀₁-mode evacuated waveguide on the surface. With extra transmission losses one shaft serves ~2 km. 37.956 m ## Minimum Machine Concepts - Removal of service tunnel - XFEL-like solution - Surface klystron solutions - Integration of e+/e- sources with upstream beam delivery system (same tunnel) - Move e+ undulator source to end of linac (250 GeV point) - e- source and 5 GeV injector linacs share BDS tunnel - 3. Main Linac Novel high-power RF distribution - "klystron-clusters" on surface (30 klystrons/cluster) - 300 MW "pipe" distribution over 1 km using over-moded waveguide - (single tunnel solution) - 4. Main Linac adoption of Marx modulator - 5. Reduced beam-power parameter set - Half klystron/modulators - 6km → 3km damping ring - 6. Two-stage → single-stage bunch compressor - 7. Remove all support for TeV upgrade - Mostly impacts BDS Potential cost savings primarily via reduced CFS requirements ## FP7 WP 5: European Siting Study # SEVENTH FRAMEWORK PROGRAMME RESEARCH INFRASTRUCTURES Construction of new infrastructures – preparatory phase Combination of Collaborative Project and Coordination and Support Action #### ILC-HiGrade International Linear Collider and High Gradient Superconducting RF-Cavities www.ilc-higrade.eu Grant agreement number 206711 Annex I - "Description of Work" ## Three Regional Sample Sites - Only one LC will be constructed in the world - In the RDR are deep site proposals in the three regions namely in Japan, Illinois and at CERN. (The design is optimized for deep tunnels.) - Their benefits will be evaluated - ILC-HiGrade encompasses the European side of the endeavour - The organization to allow site development and selection must be specified - Site choice has to be technically prepared ### **Basis of CFS Cost Estimates** - 1.) Cost represent the final construction contract cost. - 2.) Costs are based on the estimates established for the VLCW06 meeting - 3.) The dimensions of the small excavation (3M x 3M) requires labor intensive small hand held equipment and / or small inefficient machines for a drill and blast excavation. The size of tunnel needed to use efficient mechanized machines for drill an - 4.) All values are in \$USD. ### TESLA Site at DESY in HH ## Sketch of the TESLA Tunnel (TDR) # Potential ILC Site at Dubna in Russia #### Siting Studies in Europe The Joint Institute of Nuclear Research (JINR) in Dubna has proposed a site near their institute, south of the Volga river. That proposal comprises a machine close to the surface but constructed using tunnel-boring machines. Sufficient power from the Russian national grid is available. The project will assess the potential of such a site and conclude on the benefits and risks. ## General Layout of the Site Near Dubna ## Geological Cut of the Dubna Sample Site ## **Summary and Outlook** - Reference Design Report published in August 2007 - Consistent design, though details are still lacking - Significant cost savings since the original version of BCD (Dec 2005) - Physics scope not reduced (energy, luminosity) - Risk assessments underway - R&D and engineering design issues still remain - The next document will contain much more technical detail: Technical Design Phase Report due 2010 / 2012 - The XFEL (with significant Russian contribution) is a very important stepping stone towards the ILC!