RuPAC- 2008, Zvenigorod, 29 September-3 October

Dynamics of Electron/Positron Bunch in Surko Trap of LEPTA Facility

I.N. Meshkov, S.L. Yakovenko, A.V. Smirnov, D.A. Krestnikov, JINR, Dubna, Russia <u>M.K. Eseev</u>, Lomonosov Pomor State University, Archangelsk, Russia

RUPAC 08

Contents

- 1. Surko trap of LEPTA facility
- 2. Method of "rotating wall" (RW) of electric field
- 3. Results of electron (positron) accumulation in the trap
- 4. Transverse and longitudinal motion of the trapped particle
- 5. Equations of particle bunch dynamics in the trap
- 6. Electro-mechanical mode and resonances
- 7. Proposal for new experiments in the trap of Lepta facility
- 8. Conclusion

Positron trap of LEPTA facility

I. Meshkov, I. Seleznev, A. Sidorin, A. Smirnov, G. Trubnikov, S. Yakovenko, NIM B, **214**, 186 (2004)

Compression of particle bunch with RW :

Mg⁺
 X-P. Huang et al., PRL, 78, 875 (1997).

• e⁻

Anderegg, E. M. Hollmann, and C. F. Driscoll, PRL, 81, 4875 (1998).

• e⁺

R. G. Greaves and C. M. Surko , PRL, 85, 1883 (2000).

T.J. Murphy and C.M. Shurko, Phys. Plasmas, 8, 1878 (2001).

- J. R. Danielson, C. M. Surko, and T. M. O'Neil PRL., 99, 135005 (2007).
- Pbar (Hbar production)
 - J. R. Danielson , et al., PRL. 100, 203401 (2008) .

Results of electron accumulation in the trap of LEPTA

Solution of positron dynamics equations in the bunch

E_{ω} , V/cm	0.05
f _{RW} , kHz	-650
n _e , cm⁻³	10 ⁷ ÷ 10 ⁸
ω _p , c⁻¹	$3.5 \cdot 10^7 \div 2 \cdot 10^8$
B, Gauss	1200
ω _B , c ⁻¹	2.1 · 10 ¹⁰
p _{N2} , pascal	(2.4÷3.4) · 10 ⁻⁴
R , cm	0.1÷2
L, cm	30÷40

Longitudinal motion of the trapped particle

Optimal buffer gas pressure 2.25.10⁻⁶ Torr

Transverse positron motion in the crossed B-field and RW E-field

$$\xi'' + i\omega_B \xi' = \varepsilon e^{-i\omega t}$$
 $\varepsilon = \frac{e}{m} E$ $\xi = x + iy$

Transverse positron motion in the crossed B-field and RW E-field and E-field of the bunch space charge

$$\begin{split} \ddot{\xi} + i\omega_B \dot{\xi} - \frac{e}{m} E_R^0 \xi &= \frac{e}{m} E_\omega^0 e^{-i\omega t} \quad E_R = 2\pi ner \qquad \omega_p = \sqrt{\frac{4\pi e^2 n}{m}} \\ \ddot{\xi} + i\omega_B \dot{\xi} - \eta \xi &= \varepsilon e^{-i\omega t} \qquad \varepsilon = \frac{e}{m} E_\omega^0 \qquad \omega_B = \frac{eB}{mc} \\ \eta &= \frac{e}{m} E_R^0 = 2\pi \frac{e^2 n}{m} = \frac{\omega_p^2}{2} \\ x(t) &= \frac{\varepsilon}{\omega(\omega_B - \omega) - \eta} \cos \omega t + \left(x_0 \frac{\omega_B + \omega'}{2\omega'} - \frac{\varepsilon(\omega_B + \omega' - 2\omega)}{2\omega'(\omega(\omega_B - \omega) - \eta)} \right) \cos \frac{\omega_B - \omega'}{2} t + \left(-x_0 \frac{\omega_B - \omega'}{2\omega'} + \frac{\varepsilon(\omega_B - \omega' - 2\omega)}{2\omega'(\omega(\omega_B - \omega) - \eta)} \right) \cos \frac{\omega_B + \omega'}{2} t + \left(y_0 \frac{\omega_B + \omega'}{2\omega'} \right) \sin \frac{\omega_B - \omega'}{2} t + \left(-y_0 \frac{\omega_B - \omega'}{2\omega'} \right) \sin \frac{\omega_B + \omega'}{2} t \end{split}$$

RW resonant positron motion

$$\omega'^{2} = \omega_{B}^{2} - 2\omega_{p}^{2}$$

$$\omega_{B} \pm \omega' - 2\omega = 0$$

$$\omega(\omega_{B} - \omega) - 2\omega_{p}^{2} = 0$$

$$\omega = \frac{\omega_{B}}{2} \left(1 \pm \sqrt{1 - \frac{2\omega_{p}^{2}}{\omega_{B}^{2}}} \right)$$

$$\omega^{+}_{1} = \omega_{B}$$

$$\omega'^{2} \gg 0$$

$$\omega^{-}_{2} = \frac{\omega_{B}}{2} \frac{\omega_{p}^{2}}{\omega_{B}^{2}} = 2\pi \frac{nec}{B}$$

Effect of particle collisions with buffer gas molecules

$$m\ddot{x} = \frac{e}{c}\dot{y}B + eE_{x}^{\ \omega} + eE_{x}^{R} - \mu\dot{x}$$

$$m\ddot{y} = -eE_{y}^{\ \omega} - \frac{e}{c}\dot{x}B + eE_{y}^{R} - \mu\dot{y}$$

$$\ddot{\xi} + (i\omega_{B} + 2\gamma)\dot{\xi} - \eta\xi = \varepsilon e^{-i\omega t}$$

$$\xi(t) = e^{-\frac{i\omega_B t}{2}} e^{-\gamma t} \left(C_1 e^{\frac{\sqrt{4\eta + 4\gamma^2 + 4i\omega_B \gamma - \omega_B^2}}{2}t} + C_2 e^{-\frac{\sqrt{4\eta + 4\gamma^2 + 4i\omega_B \gamma - \omega_B^2}}{2}t} \right) + \frac{\varepsilon}{\omega(\omega_B - \omega - 2i\gamma) - \eta} e^{-i\omega t}$$

C M Surko at.al. J. Phys. B: At. Mol. Opt. Phys. 38 (2005) R57-R126 J Sabin Del Valle at.al. J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 2069

Particle trajectories (in transverse plane) depending of RW direction

The particle trajectories have

a circle form of constant radius

The particle trajectories have a spiral form when directions of RW and particle drift coincide

Dependence of particle rotation velocity on RW frequency

RUPAC 08, 3 October, M. Eseev

Numerical simulation of particle motion in the trap

- Collective motion of the particles
- Gaussian distribution of the particle density
- Longitudinal motion of the particle in the trap
- "The overstep" method

C.K. Birdsall, A. B. Langdon Plasma physics, via computer simulation McGraw-Hill Book Company 1985

Gaussian distribution of the positron density in "The Surko trap"

J. R. Danielson, T. R. Weber and C. M. Surko Appl. Phys. Lett. 90, 081503 (2007)

Test particle motion in "the gaussian bunch"

Wall rotation in particle drift direction

Wall rotation in the direction opposite to particle drift

Energy Losses:

- 1. Inelastic collisions with molecules of buffer gas
- 2. Synchrotron ("cyclotron") radiation
- 3. Bremsstrahlung

Particles loss due to transverse diffusion across magnetic field

Electro-mechanical mode and resonances column plasma

RUPAC 08, 3 October, M. Eseev

Electro-mechanical wave TG in cylinder column plasma

$$\varphi(r,\theta,z,t) = A \cdot J_{m_{\theta}} (b \cdot r) \exp\left[i(\omega t - m_{\theta}\theta - k_{z}z)\right]$$

$$b^{2} = -\beta^{2} \left[\frac{\left(\omega^{2} - \omega_{p}^{2}\right)\left(\omega^{2} - \omega_{B}^{2}\right)}{\omega^{2}\left(\omega^{2} - \omega_{p}^{2} - \omega_{B}^{2}\right)}\right]$$

$$\beta R = \pm p_{m_{\theta}m_{r}} \left[\frac{\omega^{2}\left(\omega^{2} - \omega_{p}^{2} - \omega_{B}^{2}\right)}{\left(\omega^{2} - \omega_{p}^{2}\right)\left(\omega^{2} - \omega_{B}^{2}\right)}\right]$$

 $m_z = k_z L / \pi$

W. Trivelpiece and R. W. Gould, J. Appl. Phys. **30**, 1784 (1959). F. Anderegg, E. M. Hollmann, and C. F. Driscoll, PRL, **81**, 4875 (1998)

RUPAC 08, 3 October, M. Eseev

.ω

Trivelpiece-Gould wave and frequency RW

Proposal for new experiments in Surko trap of LEPTA facility

•Define dynamics of the dispersion in distribution of the positron density in the accumulation process:

n(r), n(t), n(ω), Δ n/ Δ t(ω).

•Realize searching for other resonance RW frequencies on different TG modes.

•Optimization working parameters of the trap of the LEPTA facility.

- 1. Solutions of the positron dynamics equations in the bunch are in the following conditions:
 - Longitudinal magnetic field;
 - Rotating electric field;
 - Electric field of space charge positronic bunch;
 - Collisions with molecules of buffer gas.
- 2. Tracks (in transverse plane) and velocities of positrons in the trap were calculated for parameters of the trap of the LEPTA facility.
- 3. RW rotation resonance of the frequency was defined.
- 4. Numerical simulation of particle motion in the trap was realized.
- 5. Electro-mechanical TG modes and resonances in the positron bunch were defined.
- 5. Proposal for new experiments in the Surko trap for positrons was suggested.

Thank you for attention!

