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Abstract

Bubnov and Galerkin method is used to calculate the
coupling strength and cavity detuning for an rf cavity
being powered by rf waveguide over a rectangular
aperture in cavity surface. Both these so call externa
parameters are of a value in order to develop properly
accelerating system of an accelerator. Electrical fields on
coupling aperture surfaces are approximated by finite
sums coordinate functions and expansion coefficients are
found out by appropriate procedure of solution join of
neighboring regions. In Bubnov and Galerkin method,
this procedure provides energy flow continuity while
crossing coupling surfaces, and this provides fast
convergence of appropriate infinite sums. Expressions for
aperture conductances are derived followed by formulae
for reflection coefficient and cavity detuning.

INTRODUCTION

Usualy, partial region technique is used to solve
integral or partia differential equation in the region with
complicated boundary. For the cavity being excited over
an aperture in cavity surface, Maxwell equations can be
solved both for waveguide and cavity with the assumption
the electric field is known on coupling aperture surface.
Integral equation can be written for this field, and
different technique may be used to find out approximate
solution for the equation. Among various approaches,
Bubnov and Galerkin method had been found to be
powerful technique in waveguide theory [1,2].

THE GENERAL EXPRESSIONS

Fig. 1. Cavity excitation

Fig.1 represents schematically the problem under
discussion. A cavity (volume II) is powered by a
waveguide (volume I) over an aperture s in metallic
surface S that separates these volumes. Continuity
condition for tangential component of magnetic field

H onthe aperture may be written as:
[H ! (I,E,),ny ]+ [H ! (0,E,),ny, ]: 0, @
where ET stands for tangential component of electric

field on the aperture and N denotes aperture surface
normal. According to the technique under discussion one

has to search for solution for ET in the form of coordinate
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L

functions expansionE, = ZeIEI , where E, represent
1=1

aperture coordinate functions. Substituting this sum in (1)

one has after multiplying both sides by E! and
integrating over s:

L
> ey, =h, m=12..L, ©
1=1

where
Ym'| = Yr’r|1,l +Y/!

m,l

Yf#' - jE;w [ﬁ21’ H' (O,E, )]dS,
vh = [E: [, H" QE)ds ©

h = [En A" (1.0).7,Jas

Coordinate function can be chosen as following

E, :VLWe;Eh :[VLWh,ﬁ]! (4)
where functions y. and v, are the solutions of equations:
Ay +x°y =0 (5)
with the boundary conditions
v,=00y,/on=0 (6)

on on aperture counter.

APERTURE CONDUCTANCES
CALCULATION

As it is seen from (3) the magnetic fields distribution
induced by electric field on an aperture has to be known

in order to calculate partial conductances Y, . In general,
waveguide field is superposition of vector eigenfunctions:

E=>U,E; H=>I,H,, (7)
a b

where vector eigenfunctions can be found from scalar
eigenfunctions v satisfying Helmholtz equation (5) with
the boundary conditions (6):

B} ] S
Eze =VZy, qu Z_VLWE;HQG = [ZO’ qu] (®)

for TM waves and

H,=wnZyiHy, :_Vﬂ//mth = [th’zo] ©)
h

for TE waves. Supposing vector eigenfunctions to be

orthonormal we have the following expressions for

amplitude coefficients:
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U, = (EE,dS;
S
rectangular waveguide with the cross section

= |HH_dS. (10)
[HH,

For a
ax b scalar eigenfunctions are

\/(2 5o (2= O0n) o T

xcosTy
t//:—smm—xsmn—”y
¢ Jab @ a b
) sz —r
RS
(11)

Suppose that a rectangular cavity is powered by

rectangular waveguide over an aperture | X d in its end.
Let us approximate electric field of the aperture with the

function
2 a-—I|
E=_|Ssn™ | x-="— (12)
d ™ | ( jy"
In this case one has for wavegwde aperture
conductance:
Y=>Y,n (13)
a
where
COSM
n, =8 ﬁ ! 72azsin%sin%cosn?ﬂ
T tn 1_[ﬂ} (14)
a
2-6,, mb COSTa mz . nmd _ nx
n, = Sin——sin——cos—
abdl nmy,, 1 [ m|j 2 2 2
a
It foIIowsfrom (13) and (14) that
B 2 £ 128b g k2,
Y—Ylonlo ,U/Z' ad ;; 2|2 2><
k,,n°|1-
a’
,ma . ,nm . ,mr __,nx (15)
C0s" ——sin——sin“——cos* — +
2a 2b 2 2
k .
¢ 16id Z w__ coszMs;mzm
u nlab & m3l 2 2a 2
1- 2
a
where
, 16ld cos’s/2a
o= Zab (- 12/ a%) (16)
mzY  (mz)’ K
(3] () et
a b iU
In the same manner, one arrives at formulae
h=21,(Te )N, U(E,) =eny, (17)
To caculate partial conductance from resonator

volume, one has to use resonator eigenfunctions:
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(18)

E =2 1V p,.218n "2
L x, L
- 21 Iz Irx
H V., —cos—
h= ‘/L K, |:/?,’h 1Y L

1=0,1,2...

+Zh‘//hzosn|_z:| (19)

ST A ST N (20)
Ee_ L |:Ze VLWe L sin L z- Zel//ezosn L :|
- 2—
H,= \/Ai[zo Vlz//e]cos (21)
L 1 L
- _[21 LT S
Eg_\[kg (VLy/esm 3 Z+y, 2, 3 cos 3 zj 22)

= [2-64 1 Iz 4
H, = I K l1//,1cos|_z y/hzo—smTz

9

The magnetic field in resonator:
HE) =Y 1,H, = z

and it follows

(23)

kvk“

| wef
Y=Y ——V 2 (24)
ZV: k?2—k? "

For our case (rectangular resonator) one can get
formula for this conductance immediately keeping in
mind the fact that such a resonator is a short cut of a
regular waveguide.

e 128l & K2
Y =Y, ,n’ coth B—— — 0
1on10 k10 P 7Z4Ad mzlpzl

of ,_m? ’
k’"’p[l AZJ (25)

> M os? %coth KpB+

cos2 n? prd ~sin
2L

-— 1§|d i Ko : coszmsinzmcothkmﬁ
k M AL mA2 2A 2
1- X

All constants have to be taken as for waveguide with
the cross section AX L

It is more convenient to represent first term in the last
expression in the form asit is appearsin formula (24):

iwe  27°n%
K BRE

le

=Y,,n} cothk,B  (26)

RESONATOR EXTERNAL PARAMETERS
According (2,17), main wave amplitude in waveguide:

21 'n?
U, =—2w _y* 27
o ywiyr P @)

It follows immediately from this expression, that
reflection coefficient at coupling aperture cross sectionis:

L U;  2Yn?
U:  YY+Y'

-1 (28)
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At resonance the next equivalent conditions take place
at aperture cross section:

I, =|[]=min; ImI'=0 (29)

For future analysis, we will use the latter. Representing
partial conductance’s in the form

Y =Y"IY =nZ +ib";y" =Y"/Y,, =y, +ib" (30)

where

_2r%k*n? 1

B3k K, kZ—k*’

Taking into account the rf energy being dissipated in

the resonator, wave number eigenvalue may be
represented in the form:

Y, Ko=-iK, (31

2

k? =k§+ik—°, (32)

Q being resonator quality factor. Substituting (32) into
(31) one has

k2 — K>

o, 2nK? 1/Q . K

1= ' 3.0 4 2 +1 2
B Kyoko (ks—kzj 1 [ks—sz 1
+ +

(33)

kk ) @ |k ) @

The last formula can be simplified. Keeping in mind the
fact that frequency changing is small and quality factor is
much more than unity, one arrives at the expression

yo =2 272 { 1/Q }H
1~ ~ ’
"B k2 | (2Ak/ky)? [ 2Ak/k,
where Ak =k, — K.
Finaly, we have the following expressions for the
resonator detuning and reflection coefficient as well
Ak r° n?
Ky BKokZ D" +b' )
0 B K k; D™ +
(b” +b")?
272Qn2n? | B3K k2
1_‘0 = w r\2 (36)
(b™ +b")
272Qn2n? | B3K k2
In practice, coupling aperture has the third dimension —
thickness, and the whole volume consists of three regions.
These are a waveguide (1), a resonator (111) and coupling

aperture (I1) that in our case can be treated as the
waveguide section of the length h with the cross section

| x d .Approximate functions

= = = 2 . _
E:EleZ:\/d—Tsml—xy0

have to be used for aperture region, an one has the
following system

elYll + ezle = hl
elY21 + ezYzz =0

(34)

37)

(38)
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where

Y, =YY +Y%Y,, =Y Y’ (39)

e = [E;[fi,, H" (0.E,)]dS
o L (40)

Yo = J.Ez[ﬁazi H"(0,E,)]dS

s2

Y12 = IEI[ﬁzl, l:l ! (O’Ez)]ds

* (41)

= -
Y21 = _[Ez[nzs,H (O’ El)]ds
s2
Since apertures for region 11 coincide with the full cross
section of appropriate waveguide we have (tilde is used
for this waveguide parameters )

Y*=Y® =Y, cothK, h, (42)
and the following expression for reflection coefficient
takes place

__ 2Yny,
=
Y=Y / Yo
The same arguments as in the case of”thin” aperture

result in the appropriate expressions for the “thick”
coupling aperture:

(43

Aw  7n? b? .
0, BRykip b epr O R @
100
(bw+bll)2
1-9 2.2
I, = (ijva' 7 ; g=Rey, (45)
1+972 5
2nw

The dependence of standing wave ratio on aperture
dimensons had been measured experimentally.
Difference between calculated and measured values
didn’t exceeded 10%.

CONCLUSSION

The method just described proved to be powerful tool
to caculate coupling strength. Single function
approximation even gives the efficiency quite sufficient
for practical applications.

This work had been done at author diploma stage and
never before had been published. The author hopes this
paper will be useful in practice.
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