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Abstract 
Bubnov and Galerkin method is used to calculate the 

coupling strength and cavity detuning for an rf cavity 
being powered by rf waveguide over a rectangular 
aperture in cavity surface. Both these so call external 
parameters are of a value in order to develop properly 
accelerating system of an accelerator.  Electrical fields on 
coupling aperture surfaces are approximated by finite 
sums coordinate functions and expansion coefficients are 
found out by appropriate procedure of solution join of 
neighboring regions. In Bubnov and Galerkin method, 
this procedure provides energy flow continuity while 
crossing coupling surfaces, and this provides fast 
convergence of appropriate infinite sums. Expressions for 
aperture conductances are derived followed by formulae 
for reflection coefficient and cavity detuning.  

INTRODUCTION 
Usually, partial region technique is used to solve 

integral or partial differential equation in the region with 
complicated boundary.  For the cavity being excited over 
an aperture in cavity surface, Maxwell equations can be 
solved both for waveguide and cavity with the assumption 
the electric field is known on coupling aperture surface. 
Integral equation can be written for this field, and 
different technique may be used to find out approximate 
solution for the equation. Among various approaches, 
Bubnov and Galerkin method had been found to be 
powerful technique in waveguide theory [1,2].  

THE GENERAL EXPRESSIONS 

 
Fig. 1. Cavity excitation 

 
Fig.1 represents schematically the problem under 

discussion. A cavity (volume II) is powered by a 
waveguide (volume I) over an aperture s in metallic 
surface S that separates these volumes. Continuity 
condition for tangential component of magnetic field 

H
r

on the aperture may be written as: 
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where τE
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stands for tangential component of electric 

field on the aperture and n
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 denotes aperture surface 
normal. According to the technique under discussion one 

has to search for solution for τE
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in the form of coordinate 

functions   expansion l
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aperture coordinate functions. Substituting this sum in (1) 

one has after multiplying both sides by ∗Εm
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 and 

integrating over s: 
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Coordinate function can be chosen as following 
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where functions ψe and ψh are the solutions of equations: 
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with the boundary conditions 

 0/,0 =∂∂= nhe ψψ                            (6) 

on on aperture counter. 

APERTURE CONDUCTANCES 
CALCULATION 

As it is seen from (3) the magnetic fields distribution 
induced by electric field on an aperture has to be known 

in order to calculate partial conductances lmY , . In general, 

waveguide field is superposition of vector eigenfunctions: 
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where vector eigenfunctions can  be found from scalar 
eigenfunctions ψ satisfying Helmholtz equation (5) with 
the boundary conditions (6): 
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for TM waves and 
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for TE waves. Supposing vector eigenfunctions to be 
orthonormal  we have the following expressions for 
amplitude coefficients: 
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For a rectangular waveguide with the cross section 

ba × scalar eigenfunctions are 
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(11) 
Suppose that a rectangular cavity is powered by 

rectangular waveguide over an aperture dl × in its end. 
Let us approximate electric field of the aperture with the 
function 
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In this case one has for waveguide aperture 
conductance: 
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It follows from (13) and (14) that 
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In the same manner, one arrives at formulae 
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To calculate partial conductance from resonator 
volume, one has to use resonator eigenfunctions: 
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The magnetic field in resonator: 
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For our case (rectangular resonator) one can get 
formula for this conductance immediately keeping in 
mind the fact that such a resonator is a short cut of a 
regular waveguide.  
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All constants have to be taken as for waveguide with 
the cross section LA×  

It is more convenient to represent first term in the last 
expression in the form as it is appears in formula (24): 
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RESONATOR EXTERNAL PARAMETERS  
According (2,17), main wave amplitude in waveguide: 
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It follows immediately from this expression, that 
reflection coefficient at coupling aperture cross section is: 
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At resonance the next equivalent conditions take place 
at aperture cross section: 
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For future analysis, we will use the latter. Representing 
partial conductance’s in the form 
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Taking into account the rf energy being dissipated in 
the resonator, wave number eigenvalue may be 
represented in the form: 
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Q  being resonator quality factor. Substituting (32) into 
(31) one has 
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The last formula can be simplified. Keeping in mind the 
fact that frequency changing is small and quality factor is 
much more than unity, one arrives at the expression 
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where kkk −=Δ 0 . 

Finally, we have the following expressions for the 
resonator detuning and reflection coefficient as well 
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In practice, coupling aperture has the third dimension – 
thickness, and the whole volume consists of three regions. 
These are a waveguide (I), a resonator (III) and coupling 
aperture (II) that in our case can be treated as the 
waveguide section of the length h with the cross section 

dl × .Approximate functions  
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have to be used for aperture region, an one has the 
following system 
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Since apertures for region II coincide with the full cross 
section of appropriate waveguide we have (tilde is used 
for this waveguide parameters ) 
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and the following expression for reflection coefficient 
takes place 

1
/

2

22
2

1211

2
10 −

−
=Γ

YYY

nY w                      (43) 

The same arguments as in the case of”thin” aperture 
result in the appropriate expressions for the “thick” 
coupling aperture: 
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The dependence of standing wave ratio on aperture 
dimensions had been measured experimentally. 
Difference between calculated and measured values 
didn’t exceeded 10%. 

CONCLUSSION 
The method just described proved to be powerful tool 

to calculate coupling strength. Single function 
approximation even gives the efficiency quite sufficient 
for practical applications. 

This work had been done at author diploma stage and 
never before had been published. The author hopes this 
paper will be useful in practice. 
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