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Abstract

Beam stability and halo formation in high-intensity axi-
symmetric 2D beams in a uniform focusing channel are
analyzed using particle-in-cell simulations. The tune de-
pression - mismatch space is explored for the uniform (KV)
distribution of the particle transverse-phase-space density,
as well as for more realistic ones (in particular, the water-
bag distribution), to determine the stability limits and halo
parameters. The numerical results show an agreement with
predictions of the analytical model for halo formation [1].

1 INTRODUCTION

There is an increasing interest in high-current applications
of ion linacs, such as the transformation of radioactive
waste, the production of tritium, and fusion drivers. High
currents of the order of 100 mA restrict beam losses be-
low 1 ppm. Thorough studies are necessary to understand
mechanisms of intense-beam losses, in particular, beam in-
stabilities and halo formation.

Most of the theoretical efforts so far have concentrated
on the Kapchinsky-Vladimirsky (KV) distribution of parti-
cles in transverse phase space [2]. The KV beam density is
uniform so that space-charge forces inside the beam are lin-
ear. It allows an analytical investigation and results are used
to predict the behavior of real beams. On the other hand, it
is recognized that the KV model, in which all particles have
the same transverse energy, is not a realistic beam distribu-
tion, e.g. [3]. The present paper compares the KV beam
with other, nonlinear particle-density distributions, which
can serve as better models for real beams.

2 ANALYTICAL CONSIDERATION

We study a continuous axisymmetric ion beam in a uniform
focusing channel, with longitudinal velocityvz = βc. The
Hamiltonian of the transverse motion (v⊥ � vz) is

H(r, s) = s2/2 + k2
0r

2/2 + qΦ(r)/(mγ3β2c2) , (1)

wherem andq are ion mass and charge,k0 is the focusing
strength of the channel,γ = (1− β2)−1/2, r =

√
x2 + y2

is the distance from thez-axis in the transverse plane, and
s =

√
x′2 + y′2 (x′ = ẋ/βc, y′ = ẏ/βc) is the dimension-

less transverse velocity. The electric potentialΦ(r) must
satisfy the Poisson equation

∇2Φ(r) = −(q/ε0)
∫ ∫

d~sf(r, s) , (2)

wheref(x, y, x′, y′) = f(r, s) is the distribution function
in the transverse non-relativistic 4-D phase space. The in-
tegral on the RHS is the particle densityd(r).

Since the Hamiltonian (1) is an integral of motion, any
distribution function of the formf(r, s) = f(H(r, s)) is
a stationary distribution. We consider a specific set of sta-
tionary distributions for which the beam has a sharp edge
(for all ionsr ≤ rmax = a), namely,

fn(H) =
{

Nnn(H0 − H)n−1 for H ≤ H0 ,
0 for H > H0 .

(3)

The normalization constantsNn are chosen to satisfy
2π

∫ a

0 rdrd(r) = I, whered(r) is the particle density, and
I is the beam current. The set includes the KV distribution,
f0 = N0δ(H0 − H), as a formal limit ofn → 0, as well
as the waterbag (WB) distribution,f1 = N1θ(H0 − H),
whereθ(x) is the step-function. For a detailed discussion
of these two specific examples see [4].

We introduce the functionG(r) = H0−H(r, s)+s2/2,
because the density can be expressed from (3) asd(r) =
2πNnGn(r). Physically, this function gives the maximal
transverse velocity for a given radius,smax(r) =

√
2G(r),

and defines the boundary in the phase space(r, s). It allows
us to rewrite Eq. (2) as

[rG′(r)]′ /r − λ2Gn(r) = −2k2
0 , (4)

with boundary conditionsG(a) = 0, and G(0) ≡ G0

is finite. Here the parameterλ2 = K/
[∫ a

0
rdrGn(r)

]
,

whereK = 2I/
(
I0β

3γ3
)

is the beam perveance, and
I0 = 4πε0mc3/q is a constant. Particular solutions to (4)
are easy to find forn = 0 (KV) and n = 1 (WB) [4]. For
n ≥ 2 a numerical solution is required.

To compare different transverse distributions on a com-
mon basis, we consider rms-equivalent beams which have
the same perveanceK, rms radius, and rms emittancẽE .
To characterize the space-charge strength, one introduces
an equivalent (or rms) tune depression

η =
√

1 − K/(4k2
0x

2
rms) , (5)

which reduces to the usual one for the KV beam. For nu-
merical simulations we use dimensionless variables:ẑ =
k0z, and x̂ = x

√
k0/E , whereE = a′a. In normalized

variables the beam matched radius isâ =
√

(CE/C2)/η,
whereCE = Ẽ/E andC2 = x2

rms/a2. For the KV case,
CE = C2 = 1/4, so that̂a = 1/

√
η. The “hats” are omit-

ted below to simplify notation.

3 NUMERICAL SIMULATIONS

We use particle-in-cell simulations to study beam stability
and halo formation in the presence of instabilities. A leap-
frog integration is applied to trace the time evolution for
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a given initial phase-space distribution. The space-charge
radial electric field of an axisymmetric beam can be found
from Gauss’ law by counting the numbers of particles in
cells of a finite radial grid, which extends up to four times
the beam matched radius. The initial phase-space state is
populated randomly but in accordance with (3) for a chosen
n. The matched distributions remain stable except for a
minor dilution related to numerical errors. However, even
the matched KV beam is unstable forη ≤ 0.4, in agreement
with existing theory [5] and earlier simulations [6].

The beam breathing oscillations are excited by loading
a mismatched initial distributionri = µr̃i, r′i = r̃′i/µ,
wherer̃i, r̃

′
i correspond to the matched one, and the mis-

match parameterµ ≤ 1. A typical range of the simula-
tion parameters: time step∆t = T/100, whereT is the
period of breathing oscillations, total number of particles
Npar = 16K to 4096K, whereK = 1024, and radial
mesh size∆r = a/128 to a/16. The code performs sim-
ulations of about 100 breathing oscillations per CPU hour
for Npar = 256K on Sun UltraSparc 1/170.

The beam behavior is studied as a function of tune de-
pressionη and mismatchµ. Due to a discrete filling of
a mismatched beam distribution in simulations and, for
n ≥ 1, due to non-linear space-charge forces, higher modes
are excited in addition to the breathing mode. Some of
them can be unstable depending on values ofη andµ. A
detailed numerical study of stability and halo formation for
the KV beam and its comparison with the theory predic-
tions [5, 1] have already been reported in [7, 8]. Here we
compare results for different transverse distributions. In
Figs. 1-2 the maximal radius of the whole ensemble of
particles is plotted versus the number of breathing oscil-
lations for the KV and WB beams, for the particular case
of η = 0.7 andµ = 0.8 (Npar = 256K, ∆r = a/64).
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Figure 1: KV beam radius versus the number of breathing
periods forη = 0.7 andµ = 0.8. Stars are for period aver-
ages, dots show minimum and maximum during a period.

Comparison of Figs. 1 and 2 shows that for these param-
eters the WB beam remains stable much longer than the
KV one, but eventually it also blows up and some particles
form a halo far from the beam core. Results for then = 2
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Figure 2: The same as Fig. 1, but for the WB beam.

distribution are similar to those for WB. Some results de-
pend on simulation parameters; e.g., it takes a smaller num-
ber of the breathing periods for a beam to blow up ifNpar

is smaller (i.e., higher noise). However, the maximum ra-
dius, as well as the fraction of particles outside the core,
are practically independent ofNpar. The number of par-
ticles which go into the halo and produce jumps ofrmax

seen in Figs. 1-2, might be rather small. We define the halo
intensityh as the number of particles outside the boundary
rb = 1.75a divided byNpar. Such a definition is arbitrary,
but convenient to compare beam halos over a wide range of
tune depressions. While the beam behavior in Figs. 1 and
2 seems qualitatively similar, the halos for these two cases
are very different:h ' 3.5 · 10−3 for KV, and about 100
times less for the WB, with only a few particles in the halo
(less than 10 of 256K). That is the reason for oscillations
of rmax in Fig. 2: these few halo particles can initially all
come back to the core simultaneously.
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Figure 3: Beam behavior (qualitatively) versus tune depres-
sionη and mismatchµ.

A qualitative picture of the beam behavior for various
values of the tune depression and mismatch is shown in
Fig. 3, and is practically the same for all distributions stud-
ied. ’H’ corresponds to beam instability with halo forma-
tion, usually with a noticeable emittance growth, ’U’ means
that the beam is unstable but a halo is not observed in our
simulations, and ’S’ indicates beam stability. The most sur-
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prising feature of the diagram is the lack of any significant
dependence onη for mismatched beams; on the contrary,
the qualitative changes depend primarily onµ. Whenµ
changes from 0.6 to 0.8, the ratiõEfin/Ẽini decreases from
1.7–2 to 1.03–1.07 for the KV beam, and from 1.4–1.5 to
1.00–1.01 for the WB andn = 2. The number of breathing
periods after which the beam radius starts to grow notice-
ably and the halo forms, has some dependence onη; it is
smaller for smallη.

We performed a systematic study of the KV, WB, and
n = 2 distributions for tunesη from 0.1 to 0.9 and mis-
matchesµ from 0.6 to 1.0. Figure 4 shows the ratios of
the halo radius to that of the matched beam for the KV
and WB beams with three different mismatches,µ = 0.6,
0.7, and 0.8. Results forn = 2 beam are not shown; they
are slightly lower than those for the WB beam. The KV
halo has a larger radius, especially with small space charge
(largeη), but for space-charge dominated beams, at very
smallη, the ratios converge for all distributions. The ana-
lytical model for the KV halo formation [1] predicts finite
values ofrmax/a between 2 and 2.5 depending onη and
µ. One can see from simulations that it works well also for
WB andn = 2 beams.

0.2 0.4 0.6 0.8 1
η

1.5

2

2.5

3

r/a

Figure 4: Ratio of halo radius to that of the matched beam
for KV (top curves) and WB (bottom curves) beams versus
tune depressionη for different mismatches:µ = 0.6 long-
dashed,µ = 0.7 short-dashed,µ = 0.8 dotted.

Simulation results for halo intensityh are shown in Fig. 5
for KV and WB distributions. Again, results forn = 2 are
just slightly lower than for the WB beam, and not shown.
The intensity depends essentially on the mismatch, and de-
creases quickly as the mismatch decreases. The WB halo
is about 2–3 times less intense than the KV halo for small
space charge and large mismatch (0.6 and 0.7) but, for
space-charge dominated beams, the intensities are about
the same. Forµ = 0.8, however, the WB halo is at least
an order of magnitude less intense than the KV one; it is
not even included in Fig. 5. An apparent decrease ofh asη
decreases is due to the definition used: the halo boundary
radiusrb = 1.75a increases as1/

√
η. If a fixed boundary

is used instead, the same for all tunes, the halo intensity
would be larger for larger space charge.

One more interesting feature is how fast the halo devel-
ops. For the KV beam, the process is usually rather fast,
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Figure 5: Halo intensity for KV (solid) and WB beams
(dashed) vs tune depressionη for mismatchesµ = 0.6 (top
pair),µ = 0.7 (middle pair),µ = 0.8 (bottom, KV only).

and the halo saturates after a few hundred breathing pe-
riods. For the WB andn = 2 distributions, it continues
to grow rather slowly, and asymptotic values are usually
reached after a few thousand breathing oscillations; it takes
especially long forη ≤ 0.3. Data plotted in Fig. 5 cor-
respond to the asymptotic values, after N=5000 breathing
periods for WB and after N=600 for KV (exceptη ≤ 0.2,
where KV results are also for N=5000). These 5000 breath-
ing oscillations correspond to 5–10 km of the length for a
typical machine, much longer than existing proton linacs.

4 CONCLUSIONS

Our simulations show the qualitative similarity of the beam
behavior for all transverse distributions studied. The KV
beam can be considered as an extreme case compared to the
WB andn = 2 distributions which are closer to real beams.
The halo intensity is a few times higher and saturates faster
for the KV distribution than for the other two.

An interesting new observation is that for axisymmetric
beams under consideration the beam stability and halo for-
mation depend primarily on the mismatch, not on the tune
shift. The halo was clearly observed only for large mis-
matches, at least 20%, and its radius is in agreement with
the analytical model [1] for halo formation.
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