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Abstract b). the Weyl-Heisenberg group which leads to the Gabor

. . . . functions, i.e. coherent states associated with windowed
This is the second part of a series of talks in which We- o urier transform

present applications of wavelet analysis to polynomial ap-
proximr_:ltionsfora numberof accelerator p.hysics problems. [7(q,p, @) fl(@) = exp(ip(e — p(z — ) f(z — q)
According to the orbit method and by using construction
from the geometric quantization theory we construct thén both cases time-frequency plane corresponds to the
symplectic and Poisson structures associated with gen@hase space of group representation.
alized wavelets by using metaplectic structure and corre). also, we have the case of bigger group, containing both
sponding polarization. The key point is a consideratioaffine and Weyl-Heisenberg group, which interpolate be-
of semidirect product of Heisenberg group and metaplecttaeen affine wavelet analysis and windowed Fourier anal-
group as subgroup of automorphisms group of dual to synysis: affine Weyl-Heisenberg group [7]. But usual repre-
plectic space, which consists of elements acting by affingentation of it is not square—integrable and must be mod-
transformations. ified: restriction of the representation to a suitable quo-
tient space of the group (the associated phase space in that
1 INTRODUCTION case) restores square — integrability; . homoge-
neous space. Also, we have more general approach which
In this paper we continue the application of powerful methallows to consider wavelets corresponding to more general
ods of wavelet analysis to polynomial approximations ogroups and representations [8], [9]. Our goalis applications
nonlinear accelerator physics problems. In part 1 we co®f these results to problems of Hamiltonian dynamics and
sidered our main example and general approach for cofs consequence we need to take into account symplectic
structing wavelet representation for orbital motion in storhature of our dynamical problem. Also, the symplectic and
age rings. But now we need take into account the Hamiltovavelet structures must be consistent (this must be resem-
nian or symplectic structure related with system (1) fronple the symplectic or Lie-Poisson integrator theory). We
part 1. Therefore, we need to consider instead of contse the point of view of geometric quantization theory (or-
pactly supported wavelet representation from part 1 theit method) instead of harmonic analysis. Because of this
generalized wavelets, which allow us to consider the corr&ve can consider (a) — (c) analogously.
sponding symplectic structures. By using the orbit method
and constructions from the geometric quantization theory 2 METAPLECTIC GROUP AND
we consider the symplectic and Poisson structures associ- REPRESENTATIONS
ated with Weyl— Heisenberg wavelets by using metaplec- . . .
tic structure and the corresponding polarization. In part%et Sp(n) be symplectic group}/p(n) be its unique two-

; o . ; old covering — metaplectic group. Let V be a symplec-
we consider applications to construction of Melnikov func-. ; . ;
) : O . -tic vector space with symplectic form (, ), théhd V is
tions in the theory of homoclinic chaos in perturbed Hamil-_. . ) )
. nilpotent Lie algebra - Heisenberg algebra:
tonian systems.

In wavelet analysis the following three concepts are used [R,V]=0, [v,w]=(v,w)€ER, [V,V]=R.
now: 1). a square integrable representatioof a groupG,
2). coherent states over G 3). the wavelet transform assodp(V) is a group of automorphisms of Heisenberg algebra.

ated to U. Let N be a group with Lie algebr&®V/, i.e. Heisenberg
We have three important particular cases: group. By Stone—von Neumann theorem Heisenberg group
a) the affinglax + b) group, which yields the usual wavelet has unique irreducible unitary representation in wHich
analysis i. This representation is projectivé’,, Uy, = c(g1,92) -
1 r—b Uy, 4., Where cis a mapSp(V) x Sp(V) — St i.e. cis
[7(b,a)f](z) = ﬁf ( - ) S1-cocycle.
But this representation is unitary representation of uni-
* e-mail: zeitin@math.ipme.ru versal covering, i.e. metaplectic grodgp(V'). We give
T e-mail: parsa@bnl.gov this representation without Stone-von Neumann theorem.
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Consider a new group’ = N’ > Mp(V), issemidi- p = (p1,...,pn), F, isthe space of holomorphic func-
rect product (we consider instead 6f = R @ V the tions of n complex variables withy, f) < oo, where
N =St xV, S!'=(R/2rnZ)). LetV* be dual to V,

G (V™) be automorphism group &f*.Then F is subgroup (f,g) = (277)_"/f(z)rz)e_‘z‘2dpdq
of G(V*), which consists of elements, which acts Bh
by affine transformations. Consider a mag/ : H — F, , where H is with real

This is the key point!

Let g1,...,qn; p1, ..., pn D€ Symplectic basis in x =
pdqg = > pidg; andda be symplectic form oV *. Let (UP)(a) = /A(a Q) (q)dg
M be fixed affine polarization, then far € F' the map ’ ’
a — ©, gives unitary representation of @, : H(M) — where

H(M) Aayg) = w1/ 4B
Explicitly we have for representation of N on H(M): ’

polarizationF,, is with complex polarization, then we have

i.e. the Bargmann formula produce wavelets.We also have

(0,f) (x) = e f(x), O,f(x)= f(x —p) the representation of Heisenberg algebrdn
The representation of N on H(M) is irreducible. L&}, A, UiU‘ _ 1 ( - i)
be infinitesimal operators of this representation Jq; V2 \7 0z

gt Y, 2
A, —hm [@ w—1], Ap —hm [9 w — 1], Uat N \/§<Z1+azj)

then and also w = df = dp A dq, wheres = izdz.

. 4 ORBITAL THEORY FOR WAVELETS
Ayf(@) = ilg2)f (@), =YL

J Let coadjoint action be
Now we give the representation of infinitesimal basic ele- ) . 1
ments. Lie algebra of the group F is the algebra of all (non- <9 fY >=<f Ad(g)"Y >,

homogeneous) quadratic polynomials of (p,q) relativelyyhere<, > is pairingg € G, feg*, Y e€g.
Poisson bracket (PB). The basis of this algebra consists ofThe orbit isO; =G - f=G/G(f).

elementsl, qi1, ..., Gns P1; -y Pns €5, 4iPjs PiPj, 07 = Also,let A=A(M) be algebra of functions, V(M) is A-
L.,n, 1<y, module of vector fields4? is A-module of p-forms. Vector
. af 99 Of g fields on orbit is
PBis {f,g}:ZTT—yav d
Py O i Opi (0, X)1(9) = - (¢(exptXf))

and {1,g} =0 forallyg, ¢ t=0

{pisa;} = dijs where¢ € A(O), f € O. ThenO; are homogeneous

(pidj ax} = Sy, {pid, Pr} = — 0001, symplectic manifolds with 2-form

{pipj, ax} = dukpj + 6kpis {pipj, P} = 0, Qa(0,X)s,0(0,Y)s) =< f,[X,Y] >

i, qc} = 0,{4¢iqj, pr} = —dikq; — 0jkqi
{9:95, @} = 0, {qiq;, P} ki~ 0IRa andd = 0. PB on® have the next form

{1, ¥} = p(¥)¥y
where p isA}(0) — V(0O) with definitionQ(p(a), X) =

so, we have the representation of basic elements
fr=Ap 1=, qu — iz,

py %,piqj = xzaij + %5”,7 i(X)a. Here¥,, Uy, € A(O) and A(O) is Lie algebra
z i z with bracket{,}.
1 0 kol Now let N be a Heisenberg group. Consider adjoint and

PrDU T ey QRGN = - .
i dxkox! coadjomt representations in some particular case.
This gives the structure of the Poisson manifolds to repN Z t) 6 C x R,z = p+ ig; compositions in N are

N —
resentation of any (nilpotent) algebra or in other words 1 (242, t4+1'+ B(z, 7)), whereB(z, 2) =
continuous wavelet transform. g — qp Inverse element i$—¢,—z). Lie algebra n

of Nis ((,7) € C x R with bracket[((, ), (¢, )] =

(0, B(¢,¢")). Centreisz € n and generated by (0,1); Z is
a subgroupxp z. Adjoint representation N on n is given
Let by formula

3 THE SEGAL-BARGMAN REPRESENTATION

z =

(p—iq), z=—=(p+iq), Ad(z,1)(¢,7) = (¢, 7 + B(2,0))
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Coadijoint: is an operator, which according to Stone—von Neumann

for fen*, g=(z1), theorem has the property
then orbits for whichf|z # 0 are plane inn* given This is our last private case, but according to our ap-
by equationf(0,1) = p . If X = (¢,0), Y = proach we can construct by using methods of geometric
(¢",0), X,Y € nthen symplectic structure is quantization theory many "symplectic wavelet construc-

tions” with corresponding symplectic or Poisson structure
o (0, X)5,0(0Y)y) =< [,[X, Y] >= on it. Very useful particular spline—wavelet basis with uni-
£(0, B(¢,¢"))uB(¢, () form exponential control on stratified and nilpotent Lie
groups was considered in [9].

Also we have for orbit0,, = N/Z andO,, is Hamiltonian = gytended version and related results may be found in [1]-

G-space. [6].
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V(t) = exp(it(P?> + Q* + h — 1/2))
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