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Abstract

In recent years studies have been initiated on a new
class of multipole field generators consisting of cuboid
planar permanent magnet (PM) pieces arranged in bi-
planar arrays of 2-fold rotational symmetry. These
structures, first introduced  for Free Electron Laser (FEL)
applications, are based on reducing the rotational
symmetry of conventional N-pole field generators from
N-fold to 2-fold. One consequence of this reduction is a
large higher-multipole content in a planar PM multipole's
field at distances relatively close to the structure's axis,
making it generally unsuitable for applications requiring a
large high-quality field aperture. In this paper we outline
an economical  field-cancellation algorithm that can
substantially decrease the harmonic content of a planar
PM's field without breaking its biplanar geometry or 2-
fold rotational symmetry.

1 INTRODUCTION

In recent years, the development of a novel class of PM
multipole (N-pole) field generators has been initiated at
SSRL [1,2,3,4]. The basic construction principle, depicted
in Fig. 1, is to arrange N rectangular PM pieces,
magnetized with their easy  axis  perpendicular  to  two
opposed  faces, into a biplanar array with N/2 pieces per
plane.  In general, while the pieces in each quadrant of the
x-y plane can have arbitrary dimensions, x-placements,
and magnetizations, the overall structural and field
geometries possess symmetry with respect to the y-z and
x-z planes, and the normal convention is to have each of
the two sets of magnet surfaces closest to the x-z plane be
coplanar. If we postulate an ideal N-pole generator to be a
structure with N-fold rotational symmetry [5], the
essential concept of planar PM multipoles is seen to be
based on the reduction from N-fold to 2-fold rotational
symmetry.

The entire class of planar PM multipoles can be
grouped into two families:  1) N=4n; and 2) N=4n-2;
where n e {1,2,..}. Thus, the first family includes the
quadrupole (quad), octupole, dodecapole, etc., and the
second family includes the dipole, sextupole, decapole,
etc. From Fig. 1 it is seen that the basic criterion for this
classification is field symmetry, viz., the N=4n family has
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Fig. 1. Planar PM multipoles composed of  pieces of
equal height (h), with no lateral spacing between pieces.
Symmetry  axis (z axis), along which all the PM pieces
have  equal length L, is perpendicular to the page.

fields with odd symmetry vs. x, while the N=4n-2 family
has even field symmetry. For each family, the
corresponding magnetic scalar potential (for L>>g) in the
vicinity of the symmetry axis can be approximated by a
real Taylor series expansion as follows:

φ4n ≅  C11 xy + E13(xy3 - x3y)
            + G15(3xy5-10x3y3 + 3x5y) + …; (1)

and
φ4n-2 ≅   B01y+D21(3x2y-y3) 

+ F41(5x4y-10x2y3+y5) +  … ; (2)
where the subscripted capital coefficients are functions of
the PM parameters. To configure a given N-pole, the
dimensions, spacings, and magnetizations of the N pieces
must be designed to eliminate all the multipole
coefficients lower than the desired leading N-pole
coefficient. As formulas (1) and (2) explicitly show, the
field of each such N-pole will not only exhibit its leading
N-pole coefficient, but will also contain an infinitude of
higher-pole terms with strengths proportional to
increasing integral powers of distance (R) from the z axis.

In the following sections, an economical algorithm
for removing the dominant members of these higher
terms as a means of restoring the high-quality field
aperture of a planar PM multipole to values comparable
to those of a conventional structure, is outlined.
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2  APPROACHES TO PLANAR MULTIPOLE
FIELD QUALITY IMPROVEMENT

In contrast to a rotationally N-fold symmetric N-pole,
whose pole surfaces can be shaped to approximate to the
optimum equipotential contours [6], the freedom of
adjusting the parameters of planar PM  multipoles to
attain a comparable degree of field quality is rather
limited. Specifically, the shapes of the PM pieces (all
rectangular cross sections) cannot be modified, forcing all
equipotential surfaces to be planar. Secondly,
confinement to a plane prevents the rotation of the pieces
as a means of approximating to a curved 2-dimensional
equipotential contour. Under these constraints, the
principal means of improving the field quality has to be
associated with the adjustable degrees of freedom of  the
planar PM multipole, namely, the number, dimensions, x-
placements, and magnetizations of the PM pieces.
Approaching the problem from this perspective, eq's. (1)
and (2) suggest a straightforward way of enhancing the
field quality of a planar PM N-pole; namely, by the
successive removal of its higher-pole field components
[3].

The basic principle behind this approach is illustrated
in Fig. 2. For an optimized planar PM quad with the field
spectrum  shown  on  the  top left side, the octupole
component
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Fig. 2.  Linear superposition of planar PM octupole and
quadrupole rotating-coil spectra as a means of nulling the
octupole component in the combined structure. f0 is the
coil rotation frequency.

can be  nulled by centering a planar PM octupole whose
leading field component, OO, is equal and opposite to the
quad's octupole component, OQ, over the symmetry axis
of the quad. We note that since the potential is given by
the same canonical form for each structure (viz.,  by eq.
(1)), making OO=-OQ will null the octupole component
(E13 in our notation) for all values of R. Due to linear
superposition, all the higher-pole components of the PM
octupole will also tend to subtract from the corresponding
higher-pole components of the quad. This procedure can
be, of course, repeated to eliminate the  next    higher
(dodecapole)    component    of   the   combined

quad+octupole structure (see Fig. 3). Further repetition
can be used to successively remove as many of  the next-
higher (or indeed, arbitrarily-located) field components as
desired. Consequently, the same method can  be used to
purify the field of any planar PM N-pole. It is easy to
show that if an individual PM multipole is used for each
cancellation, the total number of PM pieces required for a
quad with m successively nulled next-higher components
would be 4+6m+2m2, and the corresponding number of
pieces for a  sextupole would be 6+8m+2m2. Clearly, the
straightforward application of the cancellation procedure,
as described up to this point,  requires:  1) the vertical
height of the initial N-pole structure to increase
substantially; and  2) the number of pieces to go up
rapidly with the required degree of purity. Both of  these
factors tend to li mit the practical implementability of this
approach.
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Fig 3. Planar PM quadrupole structure with nulled
octupole and dodecapole field components.

3  AN ECONOMICAL FIELD-CANCELLATION
ALGORITHM

The principle of the improved method (algorithm) to be
introduced in the present paper can now be stated: by
applying linear superposition to the PM magnet pieces
themselves it is possible to generate fields equivalent to
those of the improved structure of Fig. 3, but with a
substantially reduced number of PM pieces, and without
compromising the primary advantages of the basic N-pole
structures of Fig. 1.
Referring to Fig. 3, the first requirement is that all the
individual N-poles comprising the structure be of equal
width. The second requirement is that all the PM pieces
comprising the structure be of equal height. The third
requirement, which underlies the superposition of the
pieces is that each of the individual N-poles comprising
the structure have the same gap. It is essential to note that
under these constraints the field cancellations generated
by the octupole and dodecapole can be maintained by
suitable adjustments of the magnetization of their PM
pieces. To illustrate the method, we can first consider the
quadrupole and octupole structures in Fig. 3. Under the
cited constraints, the octupole will be completely
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superimposed over the quadrupole, yielding a structure
with only eight pieces. The magnetizations of these
pieces, however,  will now be the linear sum of the
magnetizations of the superimposed quadrupole and
octupole structures, yielding a structure with the original
quadrupole field component and a completely nulled
octupole component. This has now been accomplished
with eight pieces instead of  twelve.
.
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Fig. 4. Planar PM quadrupole field-cancellation algorithm
for removing octupole and dodecapole components with a
minimal number of pieces. Structures B and C are, apart
from a scalar factor, equivalent to A.

We next take this new structure and superimpose the
dodecapole structure over it in the same fashion. The new
constraint is that the total width of the two pieces to the
right of the dodecapole's y axis must be equal to the width
of the piece to the right of the y axis of the new eight-
piece structure. With this condition, a new twelve-piece
structure is generated which has the original quadrupole
component and completely suppressed octupole and
dodecapole components. This has now been
accomplished with only twelve pieces instead of the 24
shown in Fig. 3. Continuing in this fashion, it is
straightforward to show that a  planar PM quadrupole
with m successively nulled next-higher components
requires 4+4m pieces, and the corresponding number of
pieces for the sextupole is 6+4m. In similar fashion,
similar reductions in the complexity of higher N-poles
can be achieved. A schematic flow chart of the field-
cancellation algorithm  described in the above paragraphs
is shown in Fig. 4. In this picture the magnets are
represented by equivalent magnetic charge sheets on their
top and bottom surfaces, with the charge density
magnitudes labeled by lower-case Greek letters. It is seen
that a major penalty incurred by the proposed algorithm is
the substantial reduction in the quadrupole strength of the
reduced structures. As is evident for the quadrupole case,

the algorithm generates two alternative paths; higher-N-
pole optimization  will  involve  even  greater  numbers
of  possible implementation options.  The different
possible configurations evidently provide the opportunity
for further optimization, such as, e.g., minimizing the
maximum/minimum spread in the values of
magnetization while maximizing the dominant (N-pole)
component in the final reduced structure.

4  SUMMARY

An economical field-cancellation algorithm has been
described which will allow the fabrication of bi-planar
quadrupoles and sextupoles with high-quality fields using
a manageably small number of PM pieces. For higher
order N-poles the number of pieces required to cancel a
given number of successively-higher multipole
components will also increase linearly; nevertheless, the
practicability of fabricating octupoles and higher N-poles
of this type should be considered a subject of continuing
r&d. Since the removal of a large number of successive
multipole components essentially increases the transverse
region over which the N-pole's field is dominated by its
leading N-pole field component, the fabrication of
quadrupoles and sextupoles of  the type described in this
paper should lead to their introduction in storage ring
applications. One potentially important application in this
area is as distributed focusing elements installed into
very-short-period, small-gap undulators (e.g., as a FODO
lattice) [7]. The installation is rendered feasible by the
very small vertical height of the biplanar N-poles (on the
order of a millimeter), which, notwithstanding, doesn't
prevent them from attaining focusing gradients on the
order of several hundred T/m. If proven, this would allow
short-period undulators of substantial length (viz., >>b) to
be operated on storage rings, potentially transforming the
optimality and economy of synchrotron radiation sources
toward more favorable regimes.
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