
EXPRESSION TEMPLATES FOR TRUNCATED POWER SERIES

John R. Cary and
Svetlana G. Shasharina, Tech-X Corporation, 4588 Pussy Willow Court, Boulder, CO 80301

Abstract

Truncated Power Series technique (Differential Algebra
or DA) is a powerful tool for non-linear map analysis of
accelerators. The most natural language for numerical
DA’s is C++, since it is object oriented and has operator
overloading. Traditional C++, though, can be inefficient
for scientific programming due to creation of many
temporaries and extra loops in overloaded operators.
Recent Expression Templates technique allows a user to
combine the elegance of object oriented approach with the
speed of procedural languages. The way it was created, it
is not directly applicable for DA. We created a set of
classes whose structure will be suitable for implementing
DA vectors and maps. Classes realizing the Expression
Templates technique are separated from the client classes,
which allows their reuse for different mathematical
concepts. Speed tests on KCC compiler showed that new
C++ classes for DA have the same speed as hand-coded C.

1 PROBLEMS OF NUMERICAL
IMPLEMENTATION OF DIFFERENTIAL

ALGEBRA

Numerical differential algebra methods (see Ref. [1])
have found increasing use as they can be applied to
arbitrary dynamical systems, for example accelerators or
other beam and optics devices. The effect of passing of
particles or rays through the system can be described
mathematically by a map relating the final coordinates
(coordinates in the most general sense: momentum,
position, charge, mass etc.) to the initial. The map
contains the information needed to evaluate such
quantities of interest as nonlinear oscillation frequencies
and chromatic aberrations. However, except for several
trivial cases, it is impossible to find a closed
mathematical solution for the map. But one can find
solutions up to some order in distance from the central
trajectory through perturbation theory based on power
series expansion of the map. Numerical differential
algebra methods permit one to carry out this perturbation
theory for very high order maps, e.g., twelfth order in six
variables, where there are millions of separate terms in the
map.

For the purpose of this paper, one need to know only
a couple of facts about DA vectors. In principle, it is an
array of coefficients, obtained from Taylor expansion of
functions in multidimensional space. These vectors can
be added, subtracted, multiplied etc., and the result of
most operations depends on the whole set of coefficients
of operands. Thus, DA vectors can be represented by a

vector-type class with overloaded operators. That is the
reason why the implementation of DA methods is easiest
within object oriented programming (see [2]), which
provides a powerful triad: encapsulation, inheritance, and
dynamic binding. C++ is especially well suited since it
provides operator overloading.

Unfortunately, a big performance price must be paid to
realize many of these benefits. Performance losses of a
factor up to ten times (exact number depends on vector
length) have been reported for codes rewritten in C++.
The performance loss arises because usual C++
programming practices lead to the creation of many
temporaries and the separation of complicated loops into
loops with fewer operations. The latter is especially bad
in current times, where RISC chips may have several
arithmetic units that can be working simultaneously.

As a concrete example, we consider the evaluation of
the addition among these vector objects in the following
code fragment.

Vector y, a, b, c;
y = a + b + c;
With conventional Vector objects, usually defined as

one-dimensional arrays, perhaps including array limits,
with properly overloaded arithmetic operators, the typical
C++ compiler generates code equivalent to:

int n = a.size();
Vector temp1 = new double[n];
for(int i=0; i<n; i++) temp1[i] =
a[i] + b[i];
Vector temp2 = new double[n];
for(int i=0; i<n; i++)
 Vector temp2[i] = temp1[i] + c[i];
for(int i=0; i<n; i++)
 y[i] = temp2[i];
delete [] temp1;
delete [] temp2;
The temporary storage variables temp1 and temp2

must each be created and destroyed. Indeed, the creation of
temp2 is unecessary, but usually done by C++ compilers
that are not optimized with regard to the return of user
defined objects from operators and functions. In addition,
there are three separate loops above, when only a single
loop,

int n = b.size();
for(int i=0; i<n; i++) y[i] =
a[i]+b[i]+c[i];

is needed. The loss of efficiency due to creation of
temporaries and having separate loops can be very
significant. Whenever users use C-style similar to the
coding above, it is called hand-coded C.

26540-7803-4376-X/98/$10.00  1998 IEEE

In the next section, we describe how new C++
technique, called Expression Templates (Ref. [3]) allowed
us to make C++ classes for DA elements as fast as hand
coded C.

2 EXPRESSION TEMPLATES FOR DA
VECTORS

We start from giving the a partial implementation for
the DA vector class. From the operational point of view,
it has only addition operator (all the rest can be
implemented in a similar way). For the sake of brevity,
we declared everything public. We also had to acquire an
awkward way of formatting the code in order to preserve
the format of the paper:

class DA {
public:
 double* data;
 int length;
 DA(int n) : length(n){data = new
double[n];}
 DA(){}
 DA(const DA& x) {
 length = x.length;
 data = new double[length];
 for(int i=0;i<length;++i)
 data[i] = x.data[i];}
 ~DA() {delete [] data;}
// Access
 double& operator[](int i)
 {return data[i];}
 const double& operator[] (int i)
 const {return data[i];}
// Assignment to expression
 template <class A> DA& operator=
 (const DAExpr<A>& result){
 for (int i=0;i<length;++i)

 data[i] = result[i];
 return *this;}
// Assignment to DA
 DA& operator = (const DA& a){
 if (this == &a) return *this;
 delete [] data;
 length = a.length;
 data = new double[length];
 for(int i=0;i<length;++i)
 data[i] = a.data[i];
 return *this;}
// Summation
 template <class A, class B>
 static double Add
 (const A& a, const B& b, int i)
 {return a[i]+b[i];}
};
This class has typical (for vector-like classes)

members: double* data and int length ,
describing the set of coefficients and their number. It has

a constructor from int , a copy constructor and a typical
destructor. In order to insure a normal behavior of
assignment, we need to provide assignment to DA with
deep copying (memory management with garbage
collection can change its implementation). To implement
inlining of all expressions containing vectors, we need
assignment to DA expressions. Class for DA expressions
is template and relies on behavior of operator[]
(int) , which is governed by the type of the template
parameter A:

template<class A>
class DAExpr {
private:
 A iter;
public:
 DAExpr(const A& a) : iter(a){}
 double operator[](int i) const
 {return iter[i];}
};
Assignment to DAExpr is a template member

function of a no-template class. Not so many compilers
provide this capability: KCC compiler (Ref. [4]) is the
only one we know. If the compiler does not have
template members, see Ref. [3] for the trick

Consider how all this should work in a simple
example:

DA y, a, b;
y = a + b;
Since this operation will call for assignment of y to

an expression (a+b), summation of two DA vectors
should return a DA expression, whose type is determined
by the performed operation. In this case it is a binary
operation of + type (DApAdd) between two double
arrays:

DAExpr<DABinOp<double*,double*,DApAdd
<DA,double*,double*> > >
operator+(const DA& a, const DA& b)
{typedef DABinOp <
double*,double*,DApAdd<DA,double*,
double*> > ExprT;
return DAExpr<ExprT>
(ExprT(a.data,b.data));}
When the resulting expression is assigned to a vector,

operator[](int) , sitting in the assignment
operator, applies this operator to DAOpBin (since it is
the filling of DAExpr in this case). Inside
DAOpBin::operator[](int) , function
Op::Apply is called (with Op in our case being
DApAdd)

template<class A, class B, class Op>
class DABinOp {
private:
 A iter1;
 B iter2;
public:
 DABinOp(const A& a, const B& b)
 : iter1(a), iter2(b) {}

2655

 double operator [] (int i) const
 {return Op::Apply(iter1,iter2, i);}
};
Function Op::Apply in the case of addition is

member of a separate class DApAdd (we have to have
separate classes for all arithmetic operations):

template <class C,class A,class B>
class DApAdd {
public:
 DApAdd() { }
 static inline double Apply
 (const A& a, const B& b, int i)
 {return C::Add(a,b,i);}
};
It does not provide any specific behavior. It relies on

the class type DA to know how to perform its operations
by calling C::Add(a,b,i) , where C is DA in our
example. We have to provide full arguments iter1 ,
iter2 and index i for Op::Apply , because in some
cases (like multiplication and many other operations and
functions for DA vectors) calculation of i-th component
of the resulting vector involves several components of
operands and depends on i.

In case of operation y = a + b + c, the compiler
actually does (a+b)[i]+c[i] = a[i]+b[i]+c[i], so that the two
loops are fused in one, which makes operations as fast as
hand-coded C.

One actually must define four + operators: one for
each of the possible combinations of DAVec and
DAVExpr . None of these operators contain loops. The
template mechanism combines all of the expressions
together into one assignment, where the loop occurs.
Thus, all of the loops always collapse to a single loop.

The novelties here compared with simple vector
classes of Ref. [3], are:

(a) We pass whole objects and index to Apply
function in order to generalize to more complicated
structures. Correspondingly, we had to make class
DApAdd template.

(b) We separated implementation of operations from
the ET structure, putting it into the class itself. This idea
is similar to Glommables of Ref.[4].

(c) We had to introduce + between 2 expressions in
order to deal with situations like y=(a+b)+(c+d).

We performed speed test for our classes on KCC
compiler. The results for time to perform one addition are
shown on the figure. The upper curve corresponds to
C++, another two are: C++ with Expression Templates
and hand-coded C, which are practically indistinguishable.
The speed enhancement over traditional C++ is enormous!

REFERENCES
[1] M. Berz, "Differential Algebraic Description of Beam

Dynamics to very High Order," Particle Accelerators,
24, 109 (1989).

[2] S. Lippman, C++ Primer, second edition (Addison-
Wesley, Reading, Massachusetts, 1991).

[3] T. Veldhuizen, "Using C++ Template
Metaprograms," C++ Report, vol.7, No. 4, 36
(1995).

[4] http://www.kai.com.
[5] G. Furnish, “ Disambiguated Glommable
Expression Template,” preprint UCRL-JC-126523
(February, 1997, LLNL), submitted to Computers in
Physics.

2656

