EXPRESSION TEMPLATES FOR TRUNCATED POWER SERIES

John R. Cary and
Svetlana G. Shasharina, Tech-X Corporation, 4588 Pussy Willow Court, Boulder, CO 80301

Abstract vector-type classvith overloadedbperators. That is the
reason why the implementation of DA method®#siest
Truncated Power Series technique (Differential Algebr@jithin object oriented programming (see [2]), which
or DA) is a powerful tool for non-linear map analysis ofprovides a powerful triad: encapsulation, inheritance, and
accelerators. The mostnatural language for numerical dynamicbinding. C++ is especially well suited since it
DA's is C++, since it is objecdrientedandhasoperator provides operator overloading.
overloading. TraditionaC++, though,can be inefficient Unfortunately, a big performance price must be paid to
for scientific programmingdue to creation of many realizemany of these benefitsPerformancdosses of a
temporariesand extra loops in overloaded operators. factor up toten times(exactnumberdepends onvector
Recent Expression Templatexhniqueallows a user to |ength) have beemeportedfor codesrewritten in C++.
combine the elegance of object oriented approeth the  The performance loss arises because usual C++
speed of procedural languages. The way it eveated, it programming practices lead to the creation of many
is not directly applicable foDA. We created aset of temporariesandthe separation of complicatéoops into
classes whose structure will be suitable for implementir]gops with fewer Operations_ The latter is especia”y bad
DA vectorsandmaps. Classes realizing the EXpressiofh currenttimes, where RISC chips mayhave several
Templates technique aseparatedrom the client classes, arithmetic units that can be working simultaneously.
which allows their reuse fodifferent mathematical As a Concretexamme' weconsiderthe evaluation of

concepts. Speed tests on KCC compiler showed that ngy¢ additionamong these vector objects in the following
C++ classes for DA have the same speed as hand-codectgde fragment.

Vectory, a, b, c;
1 PROBLEMS OF NUMERICAL y=a+b+c;
IMPLEMENTATION OF DIFFERENTIAL With conventionaNector objects, usuallydefined as
ALGEBRA one-dimensional arrays, perhaps includimgay limits,

Numerical differential algebra methods (deef. [1])  with properly overloadedarithmetic operators, the typical
have foundincreasing use as thegan be applied to C++ compiler generates code equivalent to:
arbitrary dynamicabystems,for exampleaccelerators or  int n = a.size();
other beamandoptics devices. The effect of passing of Vector templ = new double[n];
particles or rays through the systeran bedescribed  for(int i=0; i<n; i++) temp1][i] =
mathematically by a map relating the finebordinates  ali] + bJ[i];
(coordinates inthe most general sense: momentum, Vector temp2 = new double[n];
position, charge, mass etc.) to the initial. The map for(int i=0; i<n; i++)

contains the informationneeded to evaluate such Vector temp2[i] = temp1l][i] + c][i];

quantities of interest as nonlinear oscillatifbequencies  for(int i=0; i<n; i++)

andchromatic aberrations. However, except $everal y[i] = temp2]i I

trivial cases, it is impossible tofind a closed delete [] templ;

mathematical solution for the map. But onan find delete [] temp2;

solutions up to somerder in distancefrom the central The temporary storage variables temptd temp2

trajectory through perturbation theolyased on power must each be created and destroyed. Indeed, the creation of
series expansion of the map. Numerichiferential temp2 is unecessary, but usuatigne byC++ compilers
algebra methods permit one ¢arry out this perturbation that arenot optimized withregard tothe return ofuser
theory for very high order maps, e.g., tweltfuer in six defined objects from operators afughctions. Inaddition,
variables, where there are millions of separate terms in ttieereare three separateops above, when only a single
map. loop,

For the purpose of this paper, omeed toknow only int n = b.size();
a couple of facts about DA vectors. In principle, it is an for(int i=0; i<n; i++) y[i] =
array of coefficients, obtained from Taylor expansion of a[i]+b][i]+c][i];
functions in multidimensional space. These vectors cag needed. The loss ofefficiency due to creation of
be addedsubtracted,multiplied etc., and the result of temporariesand having separateloops can be very
most operationslepends orthe whole set otoefficients significant. \Wheneverusers use C-style similar to the
of operands. Thus, DAvectors can beepresented by a coding above, it is called hand-coded C.

0-7803-4376-X/98/$10.00 [J 1998 IEEE 2654



In the next section, wealescribe how new C++ a constructor fronint , a copy constructaand atypical

technique, called Expression Templates (Ref. §ifwed
us to make C++ classes for DA elements as fasbad

coded C.

2 EXPRESSION TEMPLATES FOR DA

VECTORS

destructor. Inorder to insure a normal behavior of
assignment, waeed toprovide assignment tadDA with
deep copying (memory management witlgarbage
collection can change its implementation). To implement
inlining of all expressions containing vectors, weed
assignment to DA expressions. Class for DA expressions

We start from giving the a partial implementation foiS templateand relies on behavior ofoperator(]
the DA vector class. From the operational point of view(int) , which is governed bythe type of the template
it has only addition operator(all the restcan be PparameteA:
implemented in a similar way). For the sake of brevity, template<class A>

we declared everything public. We alsad to acquire an
awkwardway of formatting thecode in order to preserve

the format of the paper:
class DA {
public:
double* data;
int length;
DA(int n) : length(n){data = new
double[n];}
DA({}
DA(const DA& x) {
length = x.length;
data = new double[length];
for(int i=0;i<length;++i)
datali] = x.data[i];}
~DA() {delete [] data;}
/I Access
double& operator[](int i)
{return data[i];}
const double& operator(] (int i)
const {return data[i];}
/I Assignment to expression
template <class A> DA& operator=
(const DAExpr<A>& result){
for (int i=0;i<length;++i)
data[i] = result[i];
return *this;}
/I Assignment to DA
DA& operator = (const DA& a){
if (this == &a) return *this;
delete [] data;
length = a.length;
data = new double[length];
for(int i=0;i<length;++i)
datali] = a.datali;
return *this;}
/I Summation
template <class A, class B>
static double Add
(const A& a, const B& b, int i)
{return a[i]+bli];}
}.

This class has typical(for vector-like classes)
members: double* data and int
describing the set of coefficients and their number.

class DAEXxpr {

private:
A iter;

public:
DAExpr(const A& a) : iter(a){}
double operator[](int i) const

{return iter[i];}

h
Assignment to DAExpr is a template member
function of a no-template class. Not so many compilers
provide this capability: KCC compiler (Refi4]) is the
only one we know. If the compiledoes not have
template members, see Ref. [3] for the trick

Consider how all this should work in a simple
example:

DAY, a, b;

y=a+hb;

Since this operation will call for assignment of y to
an expression (a+b), summation of two D#ctors
should return a DA expression, whose typalésermined
by the performedoperation. In thiscase it is a binary
operation of + type (DApAdd) betweentwo double
arrays:

DAExpr<DABiInOp<double*,double*,DApAdd
<DA,double*,double*> > >

operator+(const DA& a, const DA& b)
{typedef DABInOp <
double*,double*,DApAdd<DA,double*,
double*> > ExprT,;

return DAEXpr<ExprT>
(ExprT(a.data,b.data));}

When the resulting expressiondssigned to a vector,
operator[](int) , sitting in the assignment
operator, applies thisperator toDAOpBIn (since it is
the filling of DAExpr in this case). Inside
DAOpBin::operator[](int) , function
Op::Apply is called (with Op in our case being
DApAdd)

template<class A, class B, class Op>
class DABInOp {
private:
Aiterl;
B iter2;
public:

It has DABInOp(const A& a, const B& b)

s iterl(a), iter2(b) {}

2655



double operator [] (int i) const
{return Op::Apply(iterl,iter2, i);}
2
Function Op::Apply in the case of addition is
member of aseparateclass DApAdd (we have tohave
separate classes for all arithmetic operations):

template <class C,class A,class B>

class DApAdd {

public:
DApAdd() { }
static inline double Apply

(const A& a, const B& b, int i)

{return C::Add(a,b,i);}
}.

the class typ®Ato know how toperformits operations
by calling C::Add(a,b,i) , where C is DA in our
example. We have tprovide full argumentsiterl

iter2 andindex i for Op::Apply , because irsome

It does not provide any specific behavior. It relies o)

() Wehad tointroduce + between 2xpressions in
order to deal with situations like y=(a+b)+(c+d).

We performed speetest for our classes on KCC
compiler. The results for time to perform one addition are
shown on the figure. The uppeurve corresponds to
C++, anothertwo are: C++ with Expression Templates
and hand-coded C, which gpeactically indistinguishable.
The speed enhancement over traditional C++ is enormous!

REFERENCES

[1] M. Berz, "Differential Algebraic Description d8eam
Dynamics to very HiglOrder," Particle Accelerators,
24, 109 (1989).

S. Lippman,C++ Primer, secondedition (Addison-
Wesley, Reading, Massachusetts, 1991).

[2]

T. Veldhuizen, "Using C++ Terplate
Metaprograms,"C++ Report, vol.7, No. 4, 36
(1995).

[4] http://www.kai.com.

[6] G. Furnish, “ Disambiguated Glommable

Template,” preprint UCRL-JC-126523

caseg(like multiplication andmany other operations and EXpression _ :
functions for DA vectors) calculation of i-th component(February, 1997, LLNL), submitted to Computers in
of the resulting vectomvolves several components of Physics.

operands and depends on i.
In case ofoperationy = a + b + c, the compiler

actually does (a+b)[i]+c[i] = a[i]+b[i]+c]i], so that the two [
loops are fused in one, which makes operations as fast

hand-coded C.
One actually mustefine four + operators: one for

each of the possible combinations oDAVec and

DAVExpr. None of these operators contain loops.

together into one assignmenthere the loop occurs.
Thus, all of the loops always collapse to a single loop.

The noveltieshere comparedwith simple vector
classes of Ref. [3], are:

(@ We pass whole objectand index to Apply
function in order to generalize to more complicated
structures.  Correspondingly, wiead to make class
DApAddtemplate.

(b) Weseparatedmplementation of operationfsom
the ET structure, putting it into the class itself. Tidea
is similar toGlommablesof Ref.[4].

Thi
template mechanism combines all of the expressiol|

2656



