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Abstract

Two new field solvers based on the FDTD Algorithm are
described. One solver computes resonant fields in loss-
free structures, the other computes time dependent fields,
scattering parameters and wake potentials in lossy or loss-
free structures. The program uses linked lists instead of
three dimensional arrays to model the computational vol-
ume. The main advantage of this approach is: Grid cells
are only needed in regions, which are not filled with elec-
tric or magnetic conducting materials. This may result in
an appreciable reduction of memory and CPU usage. The
modeling via the linked lists is described in detail and some
examples of calculated realistic geometries are given.

1 GENERAL METHOD

GdfidL 1 is another Finite-Difference Code that approx-
imately solves MAXWELL s equations by discretizing the
curl operators. For homogeneous materials this discretiza-
tion was invented by Yee [1]. In case of inhomogeneous
dielectric or permeable materials, the discretization of the
curl operators is the same as by Weiland [2].

1.1 Curl Equations with linked lists

The discretized curl operators are a recipe how to compute
the time derivative of a field component in the grid from
the values of the four surrounding dual components. By at-
taching a triple indexi, j, k to each field component in the
computational volume, the resulting difference equations
are very simple. Eg. theddtBz component in a lossfree re-
gion is approximated as

d

dt
Bi,j,k

z ≈ ∆x(Ei+1,j,k
x − Ei,j,k

x ) + ∆y(Ei,j+1,k
y − Ei,j,k

y )

∆x∆y

(1)
One of the advantages of this simple difference equation

is: it is easy to understand and easy to implement in a com-
puter program by declaring triple indexed variables. How-
ever for many geometries this approach has a disadvantage:
Grids cells are also assigned to regions where the material
is ideal conducting.

GdfidL uses an equation that looks slightly more com-
plicated: Cells do not carry a triple index, but only a single
index: The d

dtBz component now looks as

d

dt
Bl

z ≈ ∆x(E
n+

y (l)
x − El

x) + ∆y(En+
x (l)

y − El
y)

∆x∆y
(2)
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The indicesn+
x (l), n+

y (l) are the indices of the neigh-
bour cell in positivex−, and y−direction of the cell
with index l. These indices and four other indices
n+

z (l), n−
x (l), n−

y (l), n−
z (l) constitute the linked lists.
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Figure 1: Thel.th gridcell with its six field components.
Additionally the two field components of neighbour cells
are shown which are needed to compute the curl of E at the
position ofBl

z.

Equations similiar to (2) for all components of B in the
computational volume can be written as a single matrix
equation:

d

dt
~b = −Ce~e (3)

Here~b and~e are arithmetic vectors containing all the field
components ofE andB.

The computation ofddtE is slightly more complicated
but can also be written as a matrix equation with a matrix
Ch∗:

d

dt
~e = [ε]−1Ch[µ]−1~b = Ch∗~b (4)

1.2 Time domain

Given the discretized curl operators, the fields at the next
timestep are computed from the previous fields by the leap-
frog scheme [1].

1.3 Resonant fields

Resonant fields in principle can be found by exciting a
structure with some broadband pulse and examinating the
ringing of the fields. If one is interested in resonances that
are not well separated in frequency, such an approach needs
a long simulation timeT , since the frequency resolution
∆f of such an approach is∆f = 1/T .

GdfidL instead solves an eigenvalue problem that is di-
rectly derived from the discretized curl equations. The time
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derivatives in eqns. (3) (4) can be replaced by jω’s follow-
ing from the FOURIER transform. By substituting~b in the
second equation by the first equation, one gets:

−Ch∗Ce~e = −ω2~e (5)

This is an algebraic eigenvalue problem with a real posi-
tive semidefinite matrixA = Ch∗Ce. The lowest nonzero
eigenvalues and their corresponding eigenvectors are found
by an algorithm of T¨uckmantel [4].

Since the eigenvalue problem is directly derived
from the discretized MAXWELL ian equations, no non-
MAXWELLIAN solutions are found and GdfidL does not
have to check for them.

2 SCATTERING PARAMETERS

GdfidL computes S-parameters by performing a time do-
main simulation and subsequentlyFOURIER transforming
the histories of the tangential fields at the ports of the struc-
ture. Absorbing boundary conditions (ABCs) have to be
applied where waveguides cross the boundary of the com-
putational volume. GdfidL implements its ABCs as an ex-
pansion of the tangential fields in a limited number of or-
thogonal functions, which are the tangential fields of the
TE, TM or TEM-modes in the waveguides. The result of
this expansion is: The parts of the field that can be de-
scribed as a superposition of the expansion functions have
a reflection of less than 1% independent of frequency, the
remaining part is totally reflected.

3 WAKE POTENTIAL COMPUTATION

3.1 Beam traversing ABCs

For wakepotential computations, a rigid beam is traversing
the computational volume. For long range wakes, ABCs
have to be applied at the two beampipes where the beam
enters and exits the cavities. Since the primary field of
the charge cannot be expanded in the waveguide modes,
a special treatment is needed: With known velocity of the
charge, the primary field of the charge at the ABCs is also
known and can be subtracted from the total field. The
remaining field consists of the scattered waves and is ex-
panded in orthogonal functions.

As in case of scattering parameter calculation, a reflec-
tion of less than 1% is achieved for the parts of the field
that can be described by the number of expansion func-
tions selected, the remaining part is totally reflected. Since
this algorithm guarantees that no reflection larger than one
occurs for any field pattern of any frequency, no late time
instability occurs even for wakepotential computation.

3.2 Inhomogeneous mesh in beam direction

GdfidL exactly integrates the charge dependent factor~G in
the update equation (6) for the electric field independent of

the selected mesh spacing and of the used time step.

~en+1 = ~en +∆tCh∗~bn+1/2 − [ε]−1

(n+1)∆t∫

t=n∆t

~G(τ) dτ (6)

The main advantage is: The time step∆t can be choosen
as high as the stability limit allows; Therefore, a given time
to simulate can be computed in less time steps.

4 EXAMPLES

4.1 Scattering parameters

Fig. 2 shows a short section of a disk loaded waveguide
with attached input/ output couplers. For this case GdfidL
needed 30% of CPU that would be needed if the field com-
ponents were organized as triple indexed variables.

Figure 2: A quarter of a short section of a x-band linac.
The shown field was excited by aGAUSSIAN pulse of the
fundamental mode in the feeding waveguide left below. At
the shown time, the excitation has already died, the visi-
ble field is mostly travelling upwards the cavity chain and
partly back into the feed.

4.2 Long range Wakepotential

The computation of the long range wake in a simple test-
geometry is shown here. It is a rectangular waveguide
(w=1cm, h=0.5cm) where a rectangular cavity of depth
b=0.5cm and lengtha=1cm is in. A relativisticGAUSSIAN

line charge withσ = 5 mm is travelling in the center of the
waveguide. In order to be able to compare with a code that
does not allow inhomogeneous mesh in the direction of the
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beam, a homogeneous grid with a spacing of∆=0.5mm is
used. In fig. 4 GdfidLs results are shown both for the short

Figure 3: Primary and scattered field of a longGAUSSIAN

line charge traversing the test geometry. The charge has en-
tered the volume through an ABC at the right of the volume
and is just exiting trough the left ABC. All other boundaries
are electric.

and the long range wake. Fig. 5 shows the wake potential as
it is computed when Mur’s first ABC’s [3] are applied. The
short range wakes in both cases agree well, the long range
wake obviously does not agree. GdfidL uses a timestep of
∆t = 0.928ps and so needed 9094 timesteps for its com-
putation of the wake in the range0 < s < 2, 5 m.
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Figure 4: Above: short range wake; Below: Long range
wake as computed by GdfidL.

5 AVAILABILITY

The executable programs of GdfidL for most UNIX sys-
tems are available free of charge from the author.
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Figure 5: Above: short range wake; Below: Long range
wake. Both are computed with Mur’s first ABCs.

6 CONCLUSION

GdfidL implements a variant of the method of finite differ-
ences. The CPU and memory consumption is proportional
to the field carrying volume. Resonant fields are computed
without finding nonMAXWELL ian solutions. Scattering pa-
rameters and long range wakepotentials are computed by
applying broadband ABCs. For wakepotential computa-
tions, no restriction to homogeneous grids in the direction
of the beam exists. No late time instability occurs.
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