
A FLEXIBLE-VARIABLE TRUNCATED POWER SERIES ALGEBRA IN
Zlib ∗

Y.T. Yan, Y. Cai, and J. Irwin
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

Abstract

Zlib is a numerical library for Truncated Power Series Al-
gebra (TPSA) and Lie Algebra for application to nonlin-
ear analysis of single particle dynamics. The first version
was developed in 1990 with the use of the One-Step Index
Pointers (OSIP’s). The OSIP’s form the Zlib nerve that of-
fers optimal computation and allow order grading as well as
flexible initialization of the global number of variables for
the TPSA. While the OSIP’s are still kept for minimum in-
dex passing to achieve efficient computation, Zlib has been
being upgraded to allow flexible and gradable local num-
ber of variables in each C++ object of the Truncated Power
Series (Tps) class. Possible applications using Zlib are dis-
cussed.

1 INTRODUCTION

The first Zlib version was developed in 1990 [1] in Fortran
language. Its development was aimed at fast computation
of the one-turn Taylor map extraction of the Superconduct-
ing Super Collider (SSC) lattices and high-order nonlinear
mapping analyses. The core is the Zlib nerve system which
consists of the One-Step Index Pointers for minimum in-
dex pass to achieve efficient computation of the TPSA that
involves some fundamental operations such as addition,
subtraction, multiplication, division, inverse, sine, cosine,
square root, power, exp, log, derivative, integral, etc. of
the Tps’s, and some derived operations such as concatena-
tion, Poisson bracket, various formats of Lie generators in
Cartesian or Action-Angle coordinates, map tracking, etc.
The Tps orders were gradable. The Memories for the One-
Step Index Pointers and necessary internal auxiliary arrays
were dynamically allocated at the minimum required level
per user’s input for the maximum order and number of vari-
ables.

In 1993, the basic part (about 20%) of the Zlib Fortran
subroutines were faithfully translated into C++ codes that
form two fundamental classes of the TPSA [2]. These
two classes were named ZSeries and ZMap which han-
dles the algebra of truncated power series and vector trun-
cated power series respectively. Recently at SLAC, aim-
ing at further development in C++ for mapping analysis,
while keeping the original Zlib One-Step Index Pointers
for efficient index passing, we have been re-designing the
Zlib based on a newly invented formulation [3] that allows
for both order and variable grading. Major classes imple-
mented and to be implemented are Tps (Truncated Power

∗Work supported by the Department of Energy under Contract No.
DE-AC03-76SF00515

Series), Vps (Vector Tps), Aps (Tps in Action-Angle Vari-
ables), Lie and a variety of derived Lie classes. The trun-
cated power series coefficients are commonly understood
as a double type. Indeed, they can be a Tps type, too, mak-
ing classes Tps<Tps>, Vps<Tps>, Lie<Tps>, etc. such
that the canonical coordinate variables form a class of Tps
of which each coefficient is another class of Tps of certain
parameter variables whose optimal values are to be deter-
mined after parameterized mapping analysis.

2 ONE-STEP INDEX POINTERS

There are, fundamentally, three kinds of data structures
used in programming the TPSA in beam physics commu-
nity, the hybrid procedure of Cosy Infinity developed in late
1990’s, the One-Step-Index-Pointer procedure of Zlib de-
veloped in 1990, and the Link-List procedure of MXYZP-
PLK developed in 1990, The recent elegant TPSA “look-
back table” description of Dragt is fundamentally similar
to Zlib “One-Step Index Pointer”.

Through appropriate labeling and indexing, a Tps can
be represented by a one-dimensional array of real (double)
numbers one-to-one corresponding to the coefficients of the
Tps. For allowing order grading, low order coefficients
would be indexed first, followed by the next high-order and
then the next high-order coefficients until the preset (or de-
rived) maximum order is reached. In a mathematical for-
mula, an n-variable,P -order Tps can be written as

T (n, P) = C0 + H(n, 1) + H(n, 2) + ... + H(n, P),

whereH(n, i), i = 1, 2, ..., P, is the homogeneous polyno-
mial of orderi. andC0 is the constant term. This formula
allows for order grading (adding or truncating high-order
terms does not affect the low order structure) but not for
variable grading. Of course, in the above formula, one can
let n be the fixed order andP be the maximum number
of variables, then it allows for variable grading, but the
order has to be fixed. Such a flexible-variable but fixed-
order formulation is most suitable for use in Taylor map
extraction. Indeed, the Zlib Fortran version developed in
1990 has two sub libraries, one for gradable number of vari-
ables (the TPALIB) and the other for gradable orders (the
ZPLIB) [1].

The key to fast speed TPSA is to have One-Step Index
Pointers prepared only once for repeated use such that for
any coefficient involved in a given calculation, it can be
identified with a minimum index path. Taking Tps multi-
plication as an example, let Tps C = A * B, where A and
B are two given Tps’s that may be with different orders,
then the task is to obtain all of the coefficients of C to a

26360-7803-4376-X/98/$10.00  1998 IEEE

specified order derived from the orders of A and B and the
preset cap order. To obtainC[j] (jth-term of C), the “back-
ward” scheme would go over a loopi to sum over exactly
the number of contributing multiplication terms given by
A[aOSIP [i]] ∗B[bOSIP [i]], whereaOSIP andbOSIP
are One-Step Index Pointers (OSIP’s) stored for repeated
use to achieve fast multiplication.

3 FLEXIBLE NUMBER OF LOCAL VARIABLES

As has been described in the last section, the one-
dimensional-array data structure for the Tps can either have
variable grading or order grading but not both. If one
chooses to have gradable orders, then the number of vari-
ables is fixed in the structure. Nonetheless, one can es-
tablish a set of order-gradable One-Step Index Pointers
for each number of variables up to the maximum num-
ber of variables, and build up variable-crossing OSIP’s
that involves operations between two different number-of-
variable structures. In addition to a fixed-variable version,
Zlib has a C++ version with such a flexible-variable data
structure. Therefore, for example, one can perform Tps
multiplication directly between two Tps’s A and B with
nA and nB variables respectively, where nA may or may
not be equal to nB. In comparison with the fixed-variable
TPSA, such data structure allowing for operation among
different number of variables would ease the flexible use
of the TPSA dramatically. However, the price is paid with
a larger memories for storing a larger set of the OSIP’s.
Also note that such a data structure does not allow variable
grading though it allows for flexible number of variables.

To offset the large memories required for the OSIP’s, We
have been upgrading Zlib again based on a new formula
give by [3]

T (n, P) = C0 + x1T (1, P − 1) + x2T (2, P − 1) + ..

+ xnT (n, P − 1),

whereC0 is the constant term andx1, x2, ...xn label then
variables respectively. The nice thing about this new for-
mulation is that (a) it builds on the top of the above one-
dimensional flexible-variable scheme such that the One-
Step Index Pointers can still be used for achieving fast
speed, (b) both the number of variables and the order
are gradable simultaneously, and most importantly, (c) the
OSIP’s only need to be prepared and stored up to an order
smaller than the maximum order desired by 1 or 2, sav-
ing memories dramatically. The most saving of memories
comes from the Tps multiplication OSIP’s. They only need
to be prepared and stored up to an order that is smaller
than the maximum order by 2. For detailed description of
this new scheme, allowing both order and variable grading
while still using One-Step Index Pointers, one can refer to
the original article [3].

4 MAJOR CLASSES AND THEIR APPLICATIONS

Major classes in Zlib are Tps, Vps, Aps, Lie and its
derivatives, and related parameterized classes Tps<Tps>,

Vps<Tps>, Lie<Tps>. They are briefly described as fol-
lows.

The Tps Class

Tps is an abbreviated name for the truncated Power Series.
It is the most fundamental class in Zlib. A Tps truncated at
an order ofP can be mathematically written as [1] [6]

U(~z) =
P∑

o=0

u(~k)~z~k,

where, assuming n variables,~z represents the variables
labeled asz1, z2, ...zn, ~k represents the power indices

(k1, k2, ...kn) and so~z
~k representszk1

1 zk2
2 ...zkn

n , and
P∑

o=0

means summation over all possible monomials labeled by
~k with order given byo = k1 + k2 + ... + kn that is less
than or equal toP .

The Tps class in Zlib is designed to manipulate Tps rep-
resented by the above-described coefficients. Both the or-
der and the number of variables are local (object) member
data, that is, each object of Tps can have its own order and
number of variables that may be different from another Tps
object.

Besides providing the basic functions for the other
classes in Zlib, this class is frequently used for extracting
Taylor maps for beamlines. With a suitable Tps initializa-
tion, one simply replace the the double type declaration of
related variables with the Tps declaration in the tracking
routine to obtain Taylor maps.

The Vps Class

Vps is an abbreviated name for the Vector truncated Power
Series. A Vps truncated at an order ofP can be mathemat-
ically written as [1] [6]

~U(~z) =
P∑

o=0

~u(~k)~z~k, (1)

that is, each component of the Vps is a Tps represented by
coefficients described in the last section. For example, the
ith component would be represented by

Ui(~z) =
P∑

o=0

ui(~k)~z~k,

The Vps class in Zlib C++ version is designed to manip-
ulate Vps described above. It can represent a Taylor map
and therefore have member functions for concatenation and
Taylor-map tracking.

The Aps Class

Aps is an abbreviated name for the truncated power series
in action-angle variable space. A class named Aps in Zlib
C++ version is actively under implementation. Some of the
important member functions in this class are the nPB track-
ing and the extraction of the normalized resonance basis

2637

coefficients which was coded before in Fortran and have
been used intensively for PEP-II lattice studies [7].

The Lie Classes

Application of TPSA to nonlinear single-particle dynam-
ics usually goes with the Lie algebraic analysis. Therefore,
majority of the Zlib classes are to be for Lie algebras such
as single Lie generators, Dragt-Finn factorizations [8], non-
linear normal forms [9], kick factorizations [10], integrable
polynomial factorization [11], etc. Most of these functions
are achieved with derived Lie classes.

The parameterized Classes

In mapping analysis of a beam line lattice, in addition to
the canonical phase-space variables, we often would like to
have parameter variables which are constant but not speci-
fied with a value. Their values are either to be determined
after the analysis or are dynamical (time dependent) to al-
low additional studies such as for synchrotron oscillation,
power supply ripple, and ground motion at lower compu-
tational price. Treatment of such parameterized map in
Fortran is tedious and usually uses semi-parameterization
methods. Although some fully parameterized (coefficients
of the power series in canonical space are treated as power
series in parameter space) algorithms were written for treat-
ing both linear (but nonlinear in parameter space) and non-
linear cases [12], there were no implementation of such
fully parameterized methods in the Zlib Fortran version.
However, with the object-oriented capability, it is easier
to code such fully parameterized algorithms since one can
consider each of the coefficients in the canonical space as
an object of Tps instead of a double. These fully param-
eterized mapping methods are currently under active de-
velopment in Zlib C++ version. The major part of this ef-
fort involves classes Tps<Tps>, Vps<Tps>, Lie<Tps>
and more. We plan to make the Tps, Vps, and Lie classes
as template classes so that no extra classes are needed for
achieving these parameterized functions.

5 SUMMARY

Through several rounds of upgrading, we may have lead
Zlib to the ultimate design of the TPSA in terms of speed
and flexibility. The Zlib nerve system consisting of the
One-Step Index Pointers provides very efficient computa-
tional speed. The implementation based on the newly dis-
covered formula /citegrade given in Section III, allows flex-
ible and gradable number of variables and orders.

Possible applications of Zlib are broad. Besides per-
forming various nonlinear mapping analyses, it can be eas-
ily linked to a C++ tracking code to extract one-turn or one-
section Taylor maps.

Zlib has been linked to LEGO (a modular accelerator
design code) [13] for extracting nonlinear parameterized
maps and for non-linear mapping analysis.

6 ACKNOWLEDGEMENT

We would like to thank Scott Berg, Alex Dragt, Jim Holt,
Chris Islin, Leo Michelotti, Nick Walker, and Johannes van
Zeijts for many useful discussions. Special thanks are given
to N. Malitsky for his interest in translating the Zlib Fortran
version into the first C++ version.

7 REFERENCES

[1] Y. Yan and C. Yan, “Zlib — A Numerical Library for Differ-
ential Algebra,” SSC Laboratory Report SSCL-300 (1990);
Y.T. Yan, “Zlib and Related Programs for Beam Dynamics
Studies,” in Computational Accelerator Physics,AIP Conf.
Proc. No. 297, p.279 (1993), R. Ryne, eds.

[2] N. Malitsky, A. Reshetov, and Y. Yan, “ZLIB++: an Object-
Oriented Numerical Library for Differential Algebra,” SSCL-
659 (1994).

[3] Y.T. Yan, “A New Formula for Ultimate Design of the Trun-
cated Power Series Algebra with Both Order and Number-
of-Variable Gradability,” SLAC-PUB-7435, 1997; Y.T. Yan,
“Letter to the Editors,” ICFA Beam Dynamics Newsletter,
No. 13, P. 8, April, 1997, K. Hirata, J. Jowett, and S.Y. Lee
eds.

[4] M. Berz, “Differential Algebraic Description of Beam Dy-
namics to Very High Orders,” Particle Accel.24, 109 (1989).

[5] L. Michelotti, “MXYZPPLK: a C++ version of differential
algebra,” Fermi National Accelerator Laboratory Report FN-
535 (1990).

[6] Y.T. Yan, “Applications of Differential Algebras to Single-
Particle Dynamics in Storage Rings,” SSCL-500, in The
Physics of Particle Accelerator,AIP Conf. Proc. No. 249, p.
378 (1992), M. Month and M. Dienes, eds.

[7] Y.T. Yan, J. Irwin, and T. Chen, “Resonance Basis Maps and
nPB Tracking for Dynamics Aperture Studies,” Particle Ac-
celerators, Vol. 55, p. 263 (1996).

[8] A. Dragt and J. Finn, “Lie Series and Invariant Functions for
Analytic Symplectic Maps,” J. Math. Phys., 17, 2215 (1976).

[9] E. Forest, M. Berz, and J. Irwin, “Normal Form Methods for
Complicated Periodic Systems,” Particle Accelerators, 24, 91
(1989).

[10] J. Irwin, “A Multi-Kick Factorization Algorithm for Nonlin-
ear Maps,” in Accelerator Physics at the SSC,AIP Conf. Proc.
No. 326, edited by Y.T. Yan et al. (AIP, New York, 1995),
p. 662; D. Abell and A.J. Dragt, to be published.

[11] J. Shi and Y.T. Yan, “Explicitly Integrable Polynomial
Hamiltonians and Evaluation of Lie Transformations,” Phys.
Rev. E,48, 3943 (1993).

[12] In Chapters 5 and 6 of Ref. 5.

[13] Y. Cai, M. Donald, J. Irwin, and Y.T. Yan, “LEGO: A Mod-
ular Accelerator Design Code,” in these proceedings.

2638

