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Abstract

We present recent work on the development and testing of
a 3-D simulation code for relativistic klystron two-beam
accelerators (RK-TBAs).  This code builds on our
previous experience with 1-D and 2 1/2-D relativistic
klystron simulators.  We adopt a new approach utilizing
symplectic integration techniques to push particles,
coupled to a circuit equation framework that advances
fields in the cavities.  Space charge and current effects are
calculated using an electrostatic PIC algorithm.

1  INTRODUCTION

Current development of relativistic klystrons for
two-beam accelerator applications [1] demand a high
degree of simulation detail.  These devices are long
(extraction sections of tens to hundreds of meters),
employ both solenoid and quadrupole focusing elements,
and may use detuned RF output structures for longitudinal
stability.  In the LLNL/LBNL RK-TBA design, the beam
receives periodic re-acceleration from induction cells,
followed by energy extraction in the output RF structures.
The beam phase space cycles rapidly through a sequence
of different states, and there exist numerous instabilities
that ultimately limit the device's RF power extraction
efficiency.  The breaking of azimuthal symmetry in the
transport lines and RF cavities, and the high degree of
longitudinal bunching, necessitate a fully 3-D simulation
capability.  For a short device, a 3-D electromagnetic
particle-in-cell (PIC) code would be an appropriate
simulation tool.  However, these new devices are quite
long, so that full PIC studies become exceedingly
expensive and impractical for beamline design.

We are building a simulation code that incorporates
well established symplectic tracking techniques for single
particle motion [2] and an electrostatic beam frame PIC
algorithm, with a circuit equation solver for the cavity
modes.  

In section 2 of this paper, we describe the general
framework and formalism used by the code.  In section 3,
we present results from the simulation of transport
through a beamline comprised of magnetic quadrupoles,
induction accelerating cells, and an RF output cavity.

2  CODE FORMALISM

The code uses a Hamiltonian framework to advance
the positions and canonical momenta of the particles.
The equations of motion for particles following a given
design orbit (or fiducial) are solved exactly.  All other
particles are advanced by tracking their deviations in phase

space about the fiducial.  Deviations in transverse
position and canonical momenta, arrival time, and energy
all are tracked to 3rd order.  Likewise, external fields are
included as scalar and vector potentials, represented as 4th
order Taylor series expansions about their values along
the fiducial.  Fringe fields and overlapping beamline
elements are included automatically.  Effects arising from
self-fields are calculated by an electrostatic PIC solver in
the beam's rest frame.    

2.1 Particle Tracking

The total Hamiltonian is represented in the form

Htot = Hkin + Hex + Hself

where Hkin is the kinetic portion describing single

particle motion in the absence of all fields, Hex is the

contribution to single particle motion from external
electromagnetic fields, and Hself is the contribution from

self-fields.  The transfer maps due to the kinetic and
external field sectors are calculated together, resulting in a
total map for single particle motion.  The map due to
self-fields is then calculated separately.

These two separate mappings are applied to the
particle phase space coordinates by using split operator

techniques1.  The prescription to advance the particles,

which is accurate through 2nd order over the step size (t),
is to apply the two mappings in an interleaved manner,
viz.

Mtotal(t)  = Msingle(t/2) Mself(t) Msingle(t/2).

Here Msingle is the resultant single particle map, while

Mself is the map from the self-field impulse.  In terms of

computational expense, calculating the map due to self-
fields is by far the most costly step in this procedure.  To
increase the efficiency in the computation, we use as large
a step size as possible, while maintaining sufficient
accuracy (as determined, for example, by verifying that the

                                                
1Split operator techniques are based on splitting the

Hamiltonian into pieces that can be solved exactly (or
through some desired order of accuracy), and then combining
the separate maps to produce an approximate map for the full
Hamiltonian.  Split operator symplectic integration
algorithms (including the well known leap-frog algorithm of
plasma physics simulations) are widely used in the treatment
of Hamiltonian systems [3 4 5].
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results do not change significantly when the step size is
further decreased.)  

The self-fields are determined by numerically solving
Poisson’s equation on a 3-D Cartesian grid in the beam’s
rest frame.  Standard fast Fourier transform techniques are
used [6, 7].  For an accurate representation of the 3-D
fields from a bunched beam, we must use grid sizes of up

to      64 x 64 x 512 nodes, as well as 105 - 106

macroparticles.  Even with this many particles, noise
effects in the fields remain an issue.

2.2 Circuit Equation for RF Cavities

The RF structures are modeled by a decomposition
of fields into the vacuum modes.  Associated with each
mode is a characteristic circuit equation describing the
evolution of amplitude and phase.  The beam-cavity
interaction is modeled by specifying a small set of
parameters:  the mode frequency (wo), the loaded Q (QL)

of the mode, the [r/Q] of the mode, the driving frequency
of the beam (w), and the overlap of the beam current
density with the mode (ib).  The cavity voltage (Vc) then

evolves according to

 
Vc + ωo

QL
 Vc + ωo2 Vc = ωo r

Q
 ib

,

where the overdots indicate time derivatives.  We assume
that both the current and the cavity voltage oscillate at the
same frequency (w), and that amplitude variations in both
occur on a much longer time scale than 1/w.  Then,
solving for steady state voltage levels, we find that

Vc = ib QL r
Q

 cosψ cos(ψ+ωt)
,

where y is the tuning angle, defined by
ψ = QL ωo

ω
 - ω

ωo .
This formalism is used to study the beam dynamics

in both the RF output and the induction cell cavities.
Besides the fundamental mode in the in the RF output
structures, attention is paid to longitudinal modes in the
induction cells, as well as transverse beam-breakup (BBU)
modes in both cavities.  The BBU modes have been
identified as the cause of transverse instabilities which
eventually limit the net efficiency of the RK-TBA.  The
longitudinal mode in the induction cell cavity has been
studied [8] as a source of beam energy loss as it can
couple to the fundamental harmonic of the RF beam
current.

3  SIMULATION RESULTS

We present results of simulation through a section
of a hypothetical RKTBA extraction section.  The
beamline is comprised of permanent magnet quadrupoles,
induction cell acceleration cavities, and standing wave
output structures.  The parameters are shown in Table 1.

The RF output structure extracts 180 MW from the
beam as it passes through, corresponding to a 300 kV
drop in the beam voltage.  There are five induction
reacceleration cells per meter, each providing 60 kV to

the beam.  In this way, the beam energy is kept steady,
period by period.  Here, we attempt to model the steady-
state behavior of the beam through the section.

Table 1  Parameters of RKTBA extraction section

Beam Parameters
Average energy 3.88 MeV
DC current 600 A
RF current, frequency 1200 A,

11.424 GHz
FODO Lattice

Lattice period 0.20 m
Phase advance / period (s0) 72°
Occupancy factor 0.5

Induction Cell Parameters
Cell Voltage 60 kV

RF Structure Parameters
Frequency 11.424 GHz
QL 80

Steady-state output power 180 MW

The choice of a 1 m betatron period corresponds to
the spacing between RF output structures.  This betatron
node scheme significantly reduces the transverse
instability growth rate associated with the cavities.  In
Figure 1 we show the evolution of the transverse phase
space through a 1 m section of the beamline.  The
transverse phase space distribution is seen to remain
stationary, with only a small number of particles leaving
the core to form a halo.
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Fig. 1  Transverse phase space evolution

The beam upon injection was strongly bunched at
the 11.424 GHz frequency, but was not otherwise matched
in its longitudinal phase space.  Longitudinal space charge
forces act to debunch the beam, while the RF output
structure can be phased to provide some focusing.  Figure
2 shows the evolution of the longitudinal phase space as
the beam passes through 1 m of beamline.  The increase
in energy spread due to space charge is readily apparent,
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with nonlinearities due to the nonuniform (gaussian)
distribution.
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Fig. 2  Longitudinal phase space evolution

4  CONCLUSIONS

We have begun work on a new simulation code for
relativistic klystron two-beam accelerators.  This code
tracks the full six dimensional phase space of the beam,
and incorporates fields self-consistently.  More work on
transient power evolution in the RF cavities is being
performed.  Benchmarking of the code will concentrate
simulations of transport, RF power extraction, and
debunching effects in upcoming 35 GHz experiments.
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