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Abstract

The modal analysis of aperture-coupled cavities is fre- ‘

qguently applied to the field theoretical analysis of high- V. p 'S

power tube cavities and accelerating structures in high en- —
Z

ergy physics. Besides the rf electromagnetic field, dc space
charge effects may also be important in such applications.
Because there is no magnetic field related with dc space
charges a straightforward application of the modal expan-
sion method, which makes use of matching the aperture
tangential magnetic field, to the investigation of dc space
charge fields is not possible. In this contribution it is there'Figure 1: Cavity which is coupled to a single waveguide
fore demonstrated that the computation of the dc spectral ' '
component of the electric field due to space charges can

also be included in the modal analysis of aperture-couplggied to the analysis of the electrostatic field. Nevertheless
cavities if instead of the aperture tangential magnetic field turns out that even in this case solenoidal electric fields
the corresponding normal electric field is matched. It isre excited due to the magnetic surface currents at the short-
shown that even in this case the solenoidal electric eigepircuited coupling apertures.

functions of the cavity have to be taken into account be-

cause of the waveguide coupling. Furthermore, the validity 2 BASIC FORMULATION

z

1 INTRODUCTION

of the method is checked by applying it to a field problem N . o

for which a solution is already well-known from another™©" the sa!<e of simplicity let us c0.nS|d.er a cavity with on!y

analysis. one coupling aperture as shown in Fig. 1. The extension
of the method to more than one aperture is straightfor-
ward. In [4] the electromagnetic field inside the cavity is
expanded in terms of the solenoidal,( h,,) andirrota-

In many high-power tubes, e.g. klystrons, travelling wav&onal (f,,, g,,) eigenfunctions of the corresponding com-

tubes and gyrotrons, the beam-field interaction takes plagéetely shielded resonator:

in one or more aperture-coupled cavities. In the analysis of oo oo

such tubes space chargg effects are often not taken into ac- E Z ane, + Z % (1)

count [1]-[3] although it is well-known that this effect can- - ”

not always be neglected. This is especially the case if high o0 o0

charge densities are encountered, as e.g. in the output cavity H = Z by, + Z dng,, (2)

of a klystron. In [4] a modal analysis of aperture-coupled n n

cavitie;s has been presented WhiCh' takes space pharge efrhe expansion coefficients, corresponding to the irro-

fepts'lnto account: By the application of the ngyalencgationm electric eigenfunctions are given by

principle [5], the coupling-apertures are short-circuited and

the nonvanishing tangential electric field there is replaced b,  Zo J. £

; . — = “frdv o, 3)

by two surface magnetic currents at both sides of the short kon ko Jv "

circuit, which are equal in magnitude and opposite in di- _ o

rection. The electromagnetic field inside the cavity is then WN€reéZo, ko, ko, andJ denote the intrinsic impedance

expanded with respect to the solenoidaid irrotational ©f re€ space, the vacuum wavenumber which is propor-

eigenfunctions of the corresponding completely shieldelPn@!l to the operating frequency, the eigenvalue corre-

cavity including the effect of space charges in the analy3Ponding tof, and the current density, respectively. Keep-

ing in mind that the irrotational electric eigenfunctions are

Sis. "
The method presented in [4] makes use of matching tH&'ated to potentialg,, by
aperture tangential magnetic field. Consequently this anal- f. =V, with ¢, =0 on S (4)

ysis cannot be used for the computation of the electric field

atw = 0 which is just the electrostatic field generated by whereS is the surface of the corresponding completely
the space charges. In this contribution it is shown how thghielded cavity, and by making use of the continuity equa-
modal analysis is to be modified so that it can also be agion
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V- J = —jkocoo , (5)

wherecy andp are the free space velocity of light and
the charge density, respectively, (3) can be reformulated:

point charge
[ )

b, .
LR, / 07 dV ®)
kon v

Thus the coefficient,, is simply given by the expansion
of the charge density with respect to the potential,,. On
the other hand, it can be shown that the irrotational mag-
netic eigenfunctions are not excited.

Although we consider an electrostatic problem the exgigure 2: Short-circuited waveguide which contains a point
pansion coefficients., corresponding to the solenoidal charge.
electric cavity eigenfunctions,, do not vanish due to the
coupling apertures. From the modal analysis we obtain

Z

of--—-—---

Note that this transformation is purely real because the
Gp = j/ (E X I%) -hy dS (7) electricfield is in phase throughout the whole structure for
Se an electrostatic problem. Instead of matching the aperture
for w = 0 wheresS, andk are the coupling aperture and tangential magnetic field, we exploit the continuity of the
the unit vector in axial direction, respectively. Note tha@Xial electric field which yields
(7) still holds in the presence of a dc magnetic field due to . o
a stationary current inside the cavity because electric an -k f k=-S5 Ak, . (14
magnetic fields are decoupled for = 0. For the field dZane ok zn:b Tuk %: whucs a4
inside the waveguide only TM-modes have to be taken into
account since the dc electric field of TE-modes vanishedpplying Galerkin’s procedure, we obtain an algebraic sys-
On the other hand, TM-modes have no magnetic field fdem of equations for the unknown expansion coefficients of

n

w = 0 so that the waveguide field reads the waveguide modes:
S > * K K
Et - Ay,vtezuexq—k'u (Z — ZC)] ) (8) 6.”” n,v L A —
%: IZJ kl/ + ; kOn a

E; - ZAukuezuexq_ku (z—z)] . (9) - an/ ewf, kdS , v=1,...,00 , (15)
n Se

m

In (8) and (9), V;, e.., k, and z. are the transverse .
®) ©). Ve, car by e whered,,,, denotes Kronecker-delta. Note that thein

component of the nabla-operator, the axial electric fielol1 b X ready d ined b
characterizing theth TM-mode, the corresponding cutoff ('€ @P0ve equation are already determined by (6). In or-
er to demonstrate the validity of the proposed method let

wavenumber and the axial coordinate of the coupling aper- ider th h i Fig. 2. This il .
ture, respectively. Inserting (8) into (7), which guaranteegS consider the structure shown in Fig. 2. This illustration

the continuity of the aperture tangential electric field, on@resents a wavegwdg V,Vh'Ch ex.tends umfprmly in axial di-
arrives at rection fromz = 0 to infinity. This waveguide is assumed

- to be short-circuited and matched:at 0 andz — oo, re-
a =-S5 A, Vie., x h)-kdS . 10 spectively. The field is excited by a point charge which
’ J ZM: K /S (Viez, n) (10) is located atr;, + k2. Let us now consider the structure
as an artificial cavity with its coupling aperture located at

By making use of Maxwell’'s equation z = L. The normalized eigenfunctios,, ande,., are
V x h, = jkOnen (11)
. o . 2 pT . (pT
for the normalized cavity eigenfunctioes andh,,, where e, = A [k LVtezmsm(fz)
kon is the corresponding resonant wavenumber, we find af- ompL (14 0po) [ Komp
ter some algebraic manipulations that the cavity expansion N p
coefficientss,, are related with the waveguide mode ampli- —kTm)emcos(fzﬂ , (18)
tudesA,, by a linear transformation: 5 1 o
. Ors = 4/ T ]_c—rezrsm(fz> , a7
an = Y KnuA, with (12) Ors e Rors
W wherem andr denote the transverse orderegf, andyp, s,

respectively. p and s are the corresponding longitudinal

Koy = ko”/s czu€, Kk dS (13) orders. Inserting (16) and (17) into (15), we arrive at the

c
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following expression for the waveguide amplitudg: whereD denotes the displacement flux, it follows

oo Y Q .
Z Mezu (r+0) SII’](—Z()) V7£+) =kn g_oezn(rto) sinh(k,,z0) . (28)
s=1 (kOUSL) L 0
Au = ZOCOQO ) (18) : : :
0 92 Inserting (28) into (25) and calculatirg, for z > z, from
T2 7 T E, = =2V we arrive at the same result as has been
k, kOup (1 + 5p0) ] oz . X > .
previously derived with the modal expansion method as it
forv = 1, ..., 0. Substituting the separation conditions should be. In thl; contribution it has been demonstrated
that the computation of the dc spectral component of the
12 _ 2 p 2 19 electric field due to space charges can also be included in
omp = R T (f) ’ (19) the modal analysis of aperture-coupled cavities if instead
2 g2 ST\ 2 20 of the aperture tangential magnetic field the corresponding
ors = R T (f) (20) axial electric field is matched. It has been shown that even

d maki f the closed-f r w = 0 the solenoidal electric eigenfunctions of the cav-
|réto (18) and making use of the closed-form expressmr@ have to be taken into account because of the waveguide
[6] coupling. Furthermore, the validity of the method has been

oo B checked by applying it to a field problem for which a solu-
Z cgs(n:cg = % - M (21) tionis already well-known from another analysis.
—n’—a 2a¢®> 2a  sin(ma)

i nsin(nz)  wsin(z —7)a 22) 3 CONCLUSIONS
— n?—a’ 2 sin(ma) In this contribution it has been demonstrated that the com-

putation of the dc spectral component of the electric field
due to space charges can also be included in the modal anal-
_ . ysis of aperture-coupled cavities if instead of the aperture
Ay = =ZocoQokw ey (ri0) €XP(—ky L) siflky 20) - - tangential magnetic field the corresponding axial electric
23) . 7.
. . . . field is matched. It has been shown that evenufor 0
E.g., inserting the amplitude4, into (9), we get for the : o : .
- g the solenoidal electric eigenfunctions of the cavity have to
axial component of the electric field fer> L ; ) .
be taken into account because of the waveguide coupling.
o0 Furthermore, the validity of the method has been checked
E, = E k? ZocoQoe=p(reo) sinh(ky, z0) exp(—kpz) e, . by applying it to a field problem for which a solution is

I (24) already well-known from another analysis.
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v

i (D<+> _ D(—))

= v : (26)

Z=Z0 Z=Z0

= Qod(ri—7rw) , (27)

zZ=Zz0
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