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Abstract

The modal analysis of aperture-coupled cavities is fre-
quently applied to the field theoretical analysis of high-
power tube cavities and accelerating structures in high en-
ergy physics. Besides the rf electromagnetic field, dc space
charge effects may also be important in such applications.
Because there is no magnetic field related with dc space
charges a straightforward application of the modal expan-
sion method, which makes use of matching the aperture
tangential magnetic field, to the investigation of dc space
charge fields is not possible. In this contribution it is there-
fore demonstrated that the computation of the dc spectral
component of the electric field due to space charges can
also be included in the modal analysis of aperture-coupled
cavities if instead of the aperture tangential magnetic field
the corresponding normal electric field is matched. It is
shown that even in this case the solenoidal electric eigen-
functions of the cavity have to be taken into account be-
cause of the waveguide coupling. Furthermore, the validity
of the method is checked by applying it to a field problem
for which a solution is already well-known from another
analysis.

1 INTRODUCTION

In many high-power tubes, e.g. klystrons, travelling wave
tubes and gyrotrons, the beam-field interaction takes place
in one or more aperture-coupled cavities. In the analysis of
such tubes space charge effects are often not taken into ac-
count [1]–[3] although it is well-known that this effect can-
not always be neglected. This is especially the case if high
charge densities are encountered, as e.g. in the output cavity
of a klystron. In [4] a modal analysis of aperture-coupled
cavities has been presented which takes space charge ef-
fects into account: By the application of the equivalence
principle [5], the coupling-apertures are short-circuited and
the nonvanishing tangential electric field there is replaced
by two surface magnetic currents at both sides of the short
circuit, which are equal in magnitude and opposite in di-
rection. The electromagnetic field inside the cavity is then
expanded with respect to the solenoidaland irrotational
eigenfunctions of the corresponding completely shielded
cavity including the effect of space charges in the analy-
sis.

The method presented in [4] makes use of matching the
aperture tangential magnetic field. Consequently this anal-
ysis cannot be used for the computation of the electric field
at ω = 0 which is just the electrostatic field generated by
the space charges. In this contribution it is shown how the
modal analysis is to be modified so that it can also be ap-
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Figure 1: Cavity which is coupled to a single waveguide.

plied to the analysis of the electrostatic field. Nevertheless
it turns out that even in this case solenoidal electric fields
are excited due to the magnetic surface currents at the short-
circuited coupling apertures.

2 BASIC FORMULATION

For the sake of simplicity let us consider a cavity with only
one coupling aperture as shown in Fig. 1. The extension
of the method to more than one aperture is straightfor-
ward. In [4] the electromagnetic field inside the cavity is
expanded in terms of the solenoidal (en, hn) and irrota-
tional (fn, gn) eigenfunctions of the corresponding com-
pletely shielded resonator:

E =
∞∑
n

anen +
∞∑
n

bnfn , (1)

H =
∞∑
n

cnhn +
∞∑
n

dngn (2)

The expansion coefficientsbn corresponding to the irro-
tational electric eigenfunctions are given by

bn

k̄0n
= − Z0

jk0

∫
V

J · f∗
n dV , (3)

whereZ0, k0, k̄0n andJ denote the intrinsic impedance
of free space, the vacuum wavenumber which is propor-
tional to the operating frequency, the eigenvalue corre-
sponding tofn and the current density, respectively. Keep-
ing in mind that the irrotational electric eigenfunctions are
related to potentialsϕn by

fn = ∇ϕn with ϕn = 0 on S , (4)

whereS is the surface of the corresponding completely
shielded cavity, and by making use of the continuity equa-
tion
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∇ · J = −jk0c0% , (5)

wherec0 and% are the free space velocity of light and
the charge density, respectively, (3) can be reformulated:

bn

k̄0n
= −Z0c0

∫
V

%ϕ∗
n dV (6)

Thus the coefficientbn is simply given by the expansion
of the charge density% with respect to the potentialϕn. On
the other hand, it can be shown that the irrotational mag-
netic eigenfunctions are not excited.

Although we consider an electrostatic problem the ex-
pansion coefficientsan corresponding to the solenoidal
electric cavity eigenfunctionsen do not vanish due to the
coupling apertures. From the modal analysis we obtain

an = j

∫
Sc

(
E × k̂

)
· h∗

n dS (7)

for ω = 0 whereSc andk̂ are the coupling aperture and
the unit vector in axial direction, respectively. Note that
(7) still holds in the presence of a dc magnetic field due to
a stationary current inside the cavity because electric and
magnetic fields are decoupled forω = 0. For the field
inside the waveguide only TM-modes have to be taken into
account since the dc electric field of TE-modes vanishes.
On the other hand, TM-modes have no magnetic field for
ω = 0 so that the waveguide field reads

Et =
∞∑
µ

Aµ∇tezµexp[−kµ (z − zc)] , (8)

Ez = −
∞∑
µ

Aµkµezµexp[−kµ (z − zc)] . (9)

In (8) and (9), ∇t, ezµ, kµ and zc are the transverse
component of the nabla-operator, the axial electric field
characterizing theµth TM-mode, the corresponding cutoff
wavenumber and the axial coordinate of the coupling aper-
ture, respectively. Inserting (8) into (7), which guarantees
the continuity of the aperture tangential electric field, one
arrives at

an = −j
∞∑
µ

Aµ

∫
Sc

(∇tezµ × h∗
n) · k̂ dS . (10)

By making use of Maxwell’s equation

∇ × hn = jk0nen (11)

for the normalized cavity eigenfunctionsen andhn, where
k0n is the corresponding resonant wavenumber, we find af-
ter some algebraic manipulations that the cavity expansion
coefficientsan are related with the waveguide mode ampli-
tudesAµ by a linear transformation:

an =
∞∑
µ

Kn,µAµ with (12)

Kn,µ = k0n

∫
Sc

ezµe∗
n · k̂ dS (13)
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Figure 2: Short-circuited waveguide which contains a point
charge.

Note that this transformation is purely real because the
electric field is in phase throughout the whole structure for
an electrostatic problem. Instead of matching the aperture
tangential magnetic field, we exploit the continuity of the
axial electric field which yields

∞∑
n

anen · k̂ +
∞∑
n

bnfn · k̂ = −
∞∑
µ

Aµkµezµ . (14)

Applying Galerkin’s procedure, we obtain an algebraic sys-
tem of equations for the unknown expansion coefficients of
the waveguide modes:

∞∑
µ

(
δµν

kν
+

∞∑
n

K∗
n,νKn,µ

k0n

)
Aµ =

−
∞∑
n

bn

∫
Sc

ezνfn · k̂ dS , ν = 1, . . . ,∞ , (15)

whereδµν denotes Kronecker-delta. Note that thebn in
the above equation are already determined by (6). In or-
der to demonstrate the validity of the proposed method let
us consider the structure shown in Fig. 2. This illustration
presents a waveguide which extends uniformly in axial di-
rection fromz = 0 to infinity. This waveguide is assumed
to be short-circuited and matched atz = 0 andz → ∞, re-
spectively. The field is excited by a point chargeQ0 which
is located atrt0 + k̂z0. Let us now consider the structure
as an artificial cavity with its coupling aperture located at
z = L. The normalized eigenfunctionsemp andϕrs are

emp =

√
2

k0mpL (1 + δp0)

[
pπ

k0mpL
∇tezmsin

(pπ

L
z
)

−k̂
k2

m

k0mp
ezmcos

(pπ

L
z
)]

, (16)

ϕrs =
√

2
k̄0rsL

kr

k̄0rs
ezrsin

(sπ

L
z
)

, (17)

wherem andr denote the transverse order ofemp andϕrs,
respectively. p and s are the corresponding longitudinal
orders. Inserting (16) and (17) into (15), we arrive at the
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following expression for the waveguide amplitudeAν :

Aν = Z0c0Q0

∞∑
s=1

2sπ (−1)s(
k̄0νsL

)2 ezν(rt0) sin
(sπ

L
z0

)
1
kν

+
∞∑

p=0

2
k2
0νpL (1 + δp0)

, (18)

for ν = 1, . . . ,∞. Substituting the separation conditions

k2
0mp = k2

m +
(pπ

L

)2

, (19)

k̄2
0rs = k2

r +
(sπ

L

)2

(20)

into (18) and making use of the closed-form expressions
[6]

∞∑
n=1

cos(nx)
n2 − a2

=
1

2a2
− π

2a

cos[(x − π) a]
sin(πa)

(21)

∞∑
n=1

nsin(nx)
n2 − a2

=
π

2
sin[(x − π) a]

sin(πa)
(22)

yields

Aν = −Z0c0Q0kνezν(rt0) exp(−kνL) sinh(kνz0) .
(23)

E.g., inserting the amplitudesAν into (9), we get for the
axial component of the electric field forz > L

Ez =
∞∑
µ

k2
µZ0c0Q0ezµ(rt0) sinh(kµz0) exp(−kµz) ezµ .

(24)
Note that in the cavity expansion approach the lengthL
of the artificial cavity does not enter the expression for the
waveguide field. Therefore (24) holds as long as the cavity
contains the point charge which meansz > z0. The result
of the modal analysis is now compared with an integration
of Poisson’s equation by matching the electric potential and
the displacement flux at the cross section of the waveguide
which contains the point charge. Forz 6= z0 the electric
potentialV fulfills Laplace’s equation∇2V = 0. Suitable
series expansions forz < z0 (V (−)) andz > z0 (V (+)) are
thus

V =




V (−) =
∞∑
n

V (−)
n eznsinh(knz) , z < z0

V (+) =
∞∑
n

V (+)
n eznexp(−knz) , z > z0

.

(25)
These expansions already satisfy the boundary condition at
the shielding of the waveguide as well as atz = 0 and
z → ∞. From the matching conditions onS

V (−)
∣∣∣
z=z0

= V (+)
∣∣∣
z=z0

, (26)

k̂ ·
(
D(+) − D(−)

)∣∣∣
z=z0

= Q0δ (rt − rt0) , (27)

whereD denotes the displacement flux, it follows

V (+)
n = kn

Q0

ε0
ezn(rt0) sinh(knz0) . (28)

Inserting (28) into (25) and calculatingEz for z > z0 from
Ez = − ∂

∂z V (+), we arrive at the same result as has been
previously derived with the modal expansion method as it
should be. In this contribution it has been demonstrated
that the computation of the dc spectral component of the
electric field due to space charges can also be included in
the modal analysis of aperture-coupled cavities if instead
of the aperture tangential magnetic field the corresponding
axial electric field is matched. It has been shown that even
for ω = 0 the solenoidal electric eigenfunctions of the cav-
ity have to be taken into account because of the waveguide
coupling. Furthermore, the validity of the method has been
checked by applying it to a field problem for which a solu-
tion is already well-known from another analysis.

3 CONCLUSIONS

In this contribution it has been demonstrated that the com-
putation of the dc spectral component of the electric field
due to space charges can also be included in the modal anal-
ysis of aperture-coupled cavities if instead of the aperture
tangential magnetic field the corresponding axial electric
field is matched. It has been shown that even forω = 0
the solenoidal electric eigenfunctions of the cavity have to
be taken into account because of the waveguide coupling.
Furthermore, the validity of the method has been checked
by applying it to a field problem for which a solution is
already well-known from another analysis.
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