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Abstract

We study the impact of BPM resolution on optics
measurements at various levels of complexity: (1)
Formula linking a given distribution of BPM resolutions
to the degree of precision to which any beam trgjectory
can be determined based on these BPM's. (2). Formula for
the precision achievable in a generalized experimenta
scheme measuring transfer matrices in the presence of
(potentially coupled) orbit errors. (3) Formula constructed
from results of (1) and (2) to relate the precision of the
transfer matrix measurement to the signal-to-noise ratio of
the BPM system. (4) Criterion defined to summarize how
well the overall optical behavior of a large modular beam
transport system can be quantified. The results from (1),
(2) and (3) are used to arive at the fina andytica
expression providing a generic criterion on BPM
resolution for such systems. Redistic examples ae
discussed.

1 INTRODUCTION

The purpose of this report is to present a highly accurate
formulation of the criterion for BPM resolution under
various optics measurement schemes.[1]

Besdes monitoring the beam orbit, BPM's ae
collectively used in trgjectory determination for feedback
systems or correction programs in the control system.
The tragjectories in turn can be collectively used to
determine the transfer matrices across a section of the
beam line. This is illustrated in Figure 1. The symbol

mabij stands for the ij-th transfer matrix element from

point a to b, while xP stands for the orbit vector (x,x') a
the point p.

2 PULSE-TO-PULSE TRAJECTORY
MEASUREMENT

Using the notation of Fig. 1, we study the achievable
precision in determining the pulse-to-pulse trgectory at
point p using the BPM's in beam line section A
upstream of the unknown section. The difference between
two orbits can be determined by fitting the difference in
the BPM data to the known optical model of A:
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where NB is the number of BPM's used. The matrix
inverse represents the least square fit. The covariance
error matrix for the fitted orbit vector at p, <&yPidyPi>,
can be derived, using symplectic conditions, as a function
of the optics and the resolution Og9 for the BPM's, with
g indexing the BPM:
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This result can be used in feedback systems or other
control program designs.
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Partitioning the Double Sum

In many cases discussed below we can partition the
BPM's into subgroups and simplify the double sum in
Egn. 1.3. These subgroups can be identical cells or all
the BPM's identically located in each cell. The double
sum then is reduced to
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G above isthe total number of subgroups, indexed by m
and n. The subscript k indicates double sum only within
a subgroup.

Smple Rule of Thumb

The sums in Egn. 1.3 ae actualy very easy to
caculate[1] If one wants even more immediate
estimates, the following rules of thumb can be a
substitute. Notice that the last three equalities bresk
down for small number of BPM S.
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The subscript p labels the observation point p.

3 TRANSFER MATRIX MEASUREMENT

A scheme for measuring the unknown transfer matrix
MPUj; is devised in Fig. 1. A total of No trajectories are
sent through beam line sections A and B, where the orbit

vectors are determined in the fashion discussed above at
observation points p and . These two sets of orbit

vectors are sufficient for unfolding the unknown MPY; j-

This scheme is better than the commonly adopted method
relying only on knowledge of upstream kickers, in that it
is immune to kicker errors and incoming orbit/energy
jitters, that the beam line structure affords more exact
error analysis, and that the flexibility in expanding the
upstream section frees us from the limit on overal
precision occurring otherwise[1]. The fitting problem
now takes on the form
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Fitting for MPUjj is more involved now that the

orbit vectors on both sides of Egn. 2.1 have random
errors, most likely coupled in the manner of Egn. 1.2.
Similar problem involving uncorrelated orbit errors in
normalized coordinates has been addressed[2]. They

correspond to eigenvectors of the covariance matrix
constructed as follows:
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The zk|s are the orbit vectors normdized by the
uncoupled errors. The eigenvectors Nj contain the fitted

transfer matrix elements, which are then normalized to
uj's. The error covariance for the uj'sis given by
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To make Egn. 2.3 applicable, we need to take the
following steps.

. Diagonalization: We find the transformations
diagonalizing the orbit error covariance matrices in both
upstream and downstream sections. This is accomplished
with symplectic matrices of the form
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In doing this we introduce extra couplings among the
orbit vectorsat p and q.
. Application of Egn. 2.3: This gives the error
covariance between the fitted matrix elements in the
diagonalized coordinates.
. Cross coupling between rows. The two equations of
Egn. 2.1 appear uncorrelated. They nonetheless ae
coupled through sharing the same set of incoming orbits.
This coupling has nontrivial effects when we restore to
the undiagonalized coordinates. This effect, not addressed
by Eqgn. 2.3, has to be calculated.
. Un-normalizing the unit vectors uj: This gives the

covariance in Nj's.

. Un-diagonalization: This gives the final error
covariance in the physical coordinates, summarized as
follows:
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stands out in the final expression. Notice that quEm has

an index m for the trgjectory number. It represents the
error a the exit point g when the difference between the
exit orbit and the properly propagated entrance orbit from
p iscaculated. The error covariance in the fitted matrix
elements then takes on an intuitive form:
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4 OVERALL FORM FACTOR

Combining Egns. 1.3 and 2.7, we can cdculate the
overall error covariance in the fitted matrix elements in
terms of the signal-to-noise ratio of the BPM's. We ned
to use the generalized symplectic condition:
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in case the momenta are different at p and q. This allows
us to propagate all the orbits from p to q. The overal
error covariance is then given by
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The physical significance of these quantities deserves
some elaboration:

1. Factors determined by experimental parameters:

+SglMis the generalized signal to noiseratio. It may take
on adimension of meter or meterZ in some cases.

-T(d)lm characterizes the position-angle coupling at the
observation point p, nearly inevitable in real experiments.
When Rp=0, this term makes some of the correlation

terms disappear.
*Ng isthe sample size, i.e., the number of orbits used.

2. Factors determined by machine parameters:

*Np,q ae the number of BPM's used to determine each
trajectory at the observation points p and q respectively.
It's evident by Eqgn. 3.1 that the overall precision can not
be improved indefinitely by increasing the number of
BPM's only on one side of the measured section.

*Pp,q are the momentum values at the observation points
p and g.

«Mgpl2 are the RMS ratios defined in Egn. 1.3.  Their
evaluation is easer than appears.(1) Notice the minus
sign in the last equation.

For aBPM system designer, these quantities trand ate into
other machine specifications and have to be taken into
account in optimizing the performance. For example, No

is limited by the speed of the BPM electronics and
operation/control interface, Sgi™M is limited by the beam
pipe radius and transfer properties all around the machine,
Mg p1+2 are bound by optical or experimental conditions,

while everything else has to conform to cost restrictions.
But Egn. 3.2 does take the guesswork out of the design so
far as optica requirements are concerned. All analytic
formulas presented above have been numericaly verified.
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