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Abstract

A 3D magnetostatics computer code optimized for
Undulators and Wigglers is described. The code uses a
boundary integral method and makes extensive use of
analytical expressions for the field and field integrals
along a straight line. The code outperforms currently
available finite element packages in the area of simple
data input, CPU time of the solver and accuracy reached
for the estimation of field integrals. It is written in C++
and takes advantage of object-oriented programming. The
code is interfaced to Mathematica [1]. Pre- and post-
processing of the field data is done in the Mathematica
Language. It has been extensively benchmarked with
respect to a commercial finite element code. All ESRF
Insertion Devices built during the last 4 years have been
designed using this code or an older version.

1  INTRODUCTION

The most common approach used to compute the
magnetic field produced by an ensemble of permanent
magnets, iron pieces and current coils is based on the
Finite Element Method (FEM). The popular code
POISSON which computes magnetic fields in 2D
geometry belongs to this category. Several 3D packages
are available commercially. Their development typically
requires several man-years of programming. The input of
geometry, materials and proper meshing requires
significant skills and time from users.

In this paper we present an alternate approach based
on the Boundary Integral Method (BIM) [2]. The Radia
code has been continuously developed by the authors over
the past 8 years representing a total effort of 1.5 man-
year. During the development, the code has been regularly
and successively checked against a commercial 3D FEM
package called FLUX3D [3] and against field and field
integral measurements made on real magnetic devices
built in the ESRF Insertion Device laboratory. The code
consists in a set of functions implemented in C++ and
available in the Mathematica programming environment.
The Mathematica language is used for pre- and post-
processing. Versions of the code are currently available
for Power Macintosh and Windows 95/NT [4].

2  PRINCIPLES OF THE CODE

A user of Radia creates several types of objects and
combines them to solve the problem. The basic type of
objects are the source objects capable of creating
magnetic fields. This includes magnetized volumes,
current coils of various shapes and container objects. The
magnetized volumes can be subdivided into smaller

objects of the same kind with independent magnetizations.
Another type of object describes material properties
through the magnetization vs field law which can be a
linear anisotropic (as for NdFeB or SmCo) or nonlinear
isotropic (as for iron). The next type of objects are space
transformations such as translation, rotation or plane
symmetry. After creating the necessary objects, the user
builds the model by linking the objects together.

The essential step consists in solving the problem in
terms of magnetizations in all the volumes with particular
material properties. This is done by creating in memory a
large matrix also called an Interaction Matrix and
applying a relaxation scheme to it. After the relaxation,
magnetic field and field integrals can be computed
anywhere in space by summing the field created by all the
sources. The field from each source is computed with
efficient analytical formulas. The accuracy of the
computed field only depends on the level of segmentation
of the iron and magnet pieces.

2.1 Analytical Expressions for Field and Field Integrals

Magnetic field H produced by an object of arbitrary
shape with its volume uniformly magnetized according to
the vector M can be expressed by a matrix relation

H QM= . (1)

If the object is a rectangular parallelepiped block with
faces parallel to XY, XZ and YZ planes of the Cartesian
frame, the components of the matrix Q are represented by
the well-known formulas
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(xc,yc,zc) are Cartesian coordinates of the block’s center,
(wx,wy,wz) the block’s dimensions, (x0,y0,z0) coordinates of
an observation point. Qyy(Qzz) is deduced from Qxx by
exchanging x↔y (x↔z) in (2); Qxz(Qyz) is deduced from
Qxy by exchanging y↔z (x↔z). In addition,

Q Q    ll l l l l x y z′ ′= ′ =, , , , . (4)

In accelerator physics, the magnetic field integrated
along a straight line from -∞ to +∞ is of major
importance. Numerical integration of the field is time
consuming and fundamentally inaccurate. In Radia, the
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field integrals are computed from an analytical integration
except for a few cases when such expressions cannot be
derived easily.

Let I be the field integral along a line parallel to a
vector v=(vx,vy,vz), |v|=1, and passing through a point r0.
For a rectangular parallelepiped block with faces parallel
to XY, XZ and YZ planes and uniform magnetization M,
I can be expressed as

I H r v GM0≡ + =
−∞

+∞

∫ ( ) ,s ds (5)
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where x1,2, y1,2, z1,2 are given by (3) with (x0,y0,z0) now being
coordinates of the point r0 on the line along which the
integration is done. The other components of the matrix G
can be derived using the same rules as for the
corresponding components of the matrix Q (the
exchanging procedure concerns now also the components
of the vector v). Eqs. (6) only apply if the line does not
cross the body of the block. If vx= vz= 0 (integration along
the y edge), Eqs. (6) reduce to
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The linearity of (1) and (5) is the general property
applicable to any shape. The specificity of the shape only
appears in (2) and (6). The corresponding Matrices Q and
G derived for the general case of a volume enclosed by a
set of planar polygons will be detailed in a future
publication. At present, Radia handles the rectangular
parallelepipeds and any volumes defined by a thick
polygon (straight prism with a polygonal base).

The formulas analogous to (1)-(3), for the case of a
current carrying rectangular parallelepiped block with
constant current density can be found in [5]. We have also
implemented a current carrying arc element with constant
rectangular cross-section (details to be published later).
Finally, the vector potential can be computed on request
for all the elements using the corresponding analytical
formulas.

2.2  Space Transformations

Space transformations are used for orientation of field
source elements in space as well as for simulation of
boundary conditions by mirroring. There are four basic
space transformations in use: translation, plane symmetry,
rotation around an arbitrary axis, and field inversion.
Several space transformations can be combined (through
matrix multiplication) into a new space transformation.
Let T be a transformation that applies to a point r or to a
source object S, H(r,S) be the field produced by the object
S at the point r. The field produced by the transformed
object TS can be computed by means of the following
identity:

H r T TH T r( , ) ( , )S S= −1 . (8)

It is important to note that T applies not only to the point
r, but also to the field components. The laws of the
transformation may differ for various types of vectors.
Radial and axial vectors transform differently.

A transformation T may be applied to a source S with
some multiplicity m. m = 2 is typically used to simulate a
boundary condition, while m > 2 may be used to simulate
a multipole field symmetry. In such a case, the field
produced by S results in the sum of the fields created by
the objects Ti S with i varying from 0 to m-1. Applying
transformations with a multiplicity can be understood as
an efficient use of the symmetries in the model being
solved. This results in a minimum number of degrees of
freedom and therefore dramatically reduces the memory
requirements and CPU time needed for the solution.

2.3  Interaction Matrix and Relaxation

Let us consider N source objects having magnetization
vectors Mi, i=1,2,…,N. Let Hi be the field strength in the
center of object i. Due to the linearity of the Eq. (1), Hi

can be expressed as

H Q M Hexi ik k
k

N
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i N= + =

=
∑

1

1 2, , ,...,     , (9)

where Hexi is an external field in the center of the object i.
Qik with i,k=1,2,…,N gives the Interaction Matrix. For
each particular i and k, Qik itself is a 3 x 3 matrix. In the
simplest case of a rectangular parallelepiped with no
symmetries its components are defined by the Eqs. (2) -
(4). If a space transformation with some multiplicity m
was applied to the source object k, then Qik is the sum of
m contributions deduced from Eqs. (2) - (4) after series of
transformations of the observation point and field.

For each of the N objects, the magnetization Mi is
related to the field strength Hi by a material relation:

( )M f Hi i i i N= =, , ,... , .     1 2 (10)

Eqs. (9) - (10) describe the problem. They can be
solved by an iterative procedure that must be properly
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selected to ensure rapid convergence. We use the
following procedure where the magnetization Mi,p and
field strength Hi,p in each object i = 1,2,…,N  at iteration p
are deduced from the collection of Mi,p-1  and Hi,p-1 derived
for all the objects at the iteration p-1 by:
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where E is the 3 x 3 unit matrix, the function χi(H) gives
the local susceptibility tensor, Mri is the remanent

magnetization in the object i. For a linear material, χi does
not independ of H. For a non-linear isotropic one with the
material relation being M H H H= fi (| |) | | ,
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The iterations are stopped when the magnetizations
Mi,p  (i = 1,2,…,N) are stable to a specified precision. For
almost all cases of linear and non-linear materials that we
have studied and all sorts of subdivisions, the iterative
solution (11) - (12) was found to be fast and stable such
that no additional relaxation parameter was needed.

3  COMPARISON WITH MEASUREMENTS

The Radia code has been systematically and quite
successfully used in the past few years for the design of
Insertion Devices at ESRF. Figure 1 presents a
comparison of a peak field and field integral measured on
a real device and computed with Radia. For almost any ID
that we have designed, the computed peak field agrees
with the measurement within 2%. The discrepancies come
essentially from partially unknown material properties.
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Figure 1: Comparison of the peak field and field integral
predicted by Radia and measured on a 70 mm period hybrid
wiggler. The computed and measured small variations of the
field integral with the gap are in good qualitative agreement.

4  COMPARISON WITH FEM CODES

The proposed approach presents a number of
advantages over FEM codes.
+ Geometries opened to infinity are more easily
simulated.
+ The geometry creation requires only a few lines of the
Mathematica code.
+ For the same precision, the number of elements and
CPU time required to compute the central field of an
undulator is roughly 20 times smaller in our approach than
with second order tetrahedron elements in FEM codes.
For example, the peak field of a hybrid undulator can be
obtained with a precision better than 1% in less than 10
seconds on a PowerMac 4400, while it would take a few
minutes with an FEM code.
+ The precision of the field integral computation only
depends on the level of segmentation of the iron, but not
on the field sampling and boundary conditions applied at
infinity as is the case with FEM codes. Taking the
example of a hybrid 2T wiggler, we obtain reliable
estimation for the field integrals within several minutes of
CPU time (PowerMac 4400) which is extremely difficult
(may be impossible) with an FEM code. The design of
termination of a hybrid wiggler can therefore be
optimized over one night by a systematic exploration of a
few geometrical parameters.

There are nevertheless some weak points as well.
- In the present version of the code, the memory
required scales proportionally to the square of the number
of elements. For example, one roughly needs 100M (25M)
bytes of memory to solve a geometry made of 1000 (500)
elements. We plan to improve this in a future version.
- Another drawback is a discontinuity in the value of the
magnetic field inside subdivided iron objects, occurring at
the boundary between any adjacent sub-objects. It is
harmless if one is interested in the field sufficiently far
outside the iron. This will also be improved in future
versions.
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