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Abstract

The short–range longitudinal and transverse wakefields of a
point charge in the SBLC linac are obtained using a modal
summation technique. Simple functional fits to these wakes
are given, which can be used as Green functions in beam
dynamics simulations of bunches. These results, however,
are valid only after the beam has traversed a critical num-
ber of cellsNcrit. Using time domain computations with
Gaussian bunches we have obtained results that are consis-
tent withNcrit varying asαa2/(Lσz), with a the iris radius
andL the period length of the structure,σz the bunch length
andα a constant on the order of 1. For the loss per cell to
reach to within a few per cent of the asymptotic value we
find thatα ∼ 0.5− 1.0.

1 INTRODUCTION

In the S-Band Linear Collider (SBLC) project[1] long
trains of short, intense bunches of electrons and positrons
are each accelerated through 16 km of linac to 250 GeV
before colliding at the interaction point. The accelerat-
ing structure is a disk-loaded, constant gradient structure
consisting of 180 cells. Each bunch is Gaussian, with rms
lengthσz = 300 µm, which is short compared to the iris
radiusa: σz/a ∼ .025 (for FEL operation it is even shorter:
σz/a ∼ .0021). For a single cavity with beam tubes
the longitudinal high frequency impedance varies with fre-
quency asω−1/2, implying that the longitudinal wakefield
of a short bunch varies asσ−1/2

z [2]. For a periodic struc-
ture the longitudinal high frequency impedance (real part)
varies asω−3/2, and the wakefield per cell of a bunch ap-
proaches a constant value asσz → 0[3, 4]. For a structure
consisting of a finite number of repeating cells with beam
tubes the wake of the first cell is the same as the single
cell result and the wake per cell asymptotically approaches
that of the periodic result as the beam progresses down the
structure. For a Gaussian bunch the number of cells needed
for the periodic solution to be valid,Ncrit, is given by[3, 4]

Ncrit =
αa2

Lσz
, (1)

with L the structure period length andα a constant of pro-
portionality on the order of one.

In this report first a frequency domain approach is used
to obtain the short–range longitudinal (monopole) and
transverse (dipole) wakefields in a periodic, SBLC-like
structure. Then time domain calculations are performed to
test the validity of Eq. 1, and to findα. More details can be
found in Ref. [5].

2 THE ASYMPTOTIC WAKEFIELDS

In the SBLC linac the cell dimensions vary within a struc-
ture, but only gradually. We first find the wakes for 5 purely
periodic models, with cell dimensions similar to 5 repre-
sentative cells of the actual SBLC structure. For our 5
representative cells we take cells 1, 45, 90, 135, and 180
for which a is 1.1 cm, 1.225 cm, 1.35 cm, 1.475 cm, and
1.6 cm, respectively. Note that the cell lengthL = 3.33 cm,
iris thicknesst = 5.3 mm, and cavity radiusb ≈ 4 cm. The
wakes of the 5 models are then averaged to give the wake-
fields representing an entire structure.

To obtain the longitudinal wakefield of a periodic struc-
ture we use the computer program KN7C[6] to obtain
the synchronous frequencies and loss factors of lower
monopole modes. We approximate the high frequency
contribution to the impedance using the so-called Sessler-
Vainsteyn optical resonator model[6], a model that has also
been applied, for example, to the SLC[7] and the NLC[8].
The real part of the impedance (assumingt/L is small)
becomes[8]

Rz(ω) =
N∑

n=1

πknδ(ω − ωn) +
2Z0j

2
01

πLζ2
× (2)

×
√

ν + 1
(ν + 2

√
ν + 2)2

Θ(ω − ωN ) ω > 0 ,

with kn the loss factor andωn the frequency of thenth

mode,Z0
∼= 377 Ω, j01 ∼= 2.41 the first zero of the Bessel

function J0, ζ ∼= 0.824, ν = 4a2ω/(cL̄ζ2), with c the
speed of light and̄L =

√
L(L − t); Θ(x) = 0 for x < 0,

1 for x > 0. Fourier transformingRz(ω) we obtain the
longitudinal wakefield:

Wz(s) =
N∑

n=1

2kn cos
ωns

c
+

Z0cj
2
01L̄

π2a2L
× (3)

×
∫ ∞

νN

√
ν + 1

(ν + 2
√

ν + 2)2
cos(

ζ2L̄sν

4a2
) dν ,

with νN = 4a2ωN/(cL̄ζ2). The transverse (dipole) wake-
field is obtained in the analogous manner, but using the
computer program TRANSVRS [9] to obtain the dipole
mode frequencies and loss factors.

For the longitudinal case we have found, for each of the
5 representative structures,ωn andkn for all modes up to
75 GHz (about 250 modes) using KN7C. Comparing, at the
higher frequencies, the binned modal contribution to the
Sessler-Vainsteyn part of Eq. 3 we find good agreement,
to within 10%. Then substituting into Eq. 4 we obtain the
wakefields shown in Fig. 1 (the solid curves). The values
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at the origin, which should equal [4]Wz(0) = Z0c/(πa2)
(= 198 V/pC/m for cell 90 dimensions), are 4–5% low, in-
dicating some calculation error. The average of the 5 repre-
sentative wakes (with the wakes of cell 1 and 180 weighted
by half) is given by the dashed curve in Fig. 1. Finally, a fit
to the average wake, given by

Wz = 200.(V/pC/m) · exp
[
−0.77(s/mm)

1
2

]
, (4)

is shown by the dots in Fig. 1.

Figure 1: The longitudinal wakefield of representative cells
in the SBLC structure (solid curves). The dashes represent
the average, the dots the model fit, Eq. 4.

For the transverse case modes up to 68 GHz (about 350
modes) were calculated. Comparing, at the higher fre-
quencies, the binned modal contribution to the Sessler-
Vainsteyn part of the impedance we again find good agree-
ment. The transverse wakefields for the 5 geometries are
shown in Fig. 2 (the solid curves). In this case the slope
at the origin should equal[8]W ′

x(0) = 2Z0c/(πa4) (=
2.17 V/pC/mm2/m for cell 90); our numerical results agree
to within 2% in all cases. The average wake is given by the
dashed curve in Fig. 2. A fit to the average wake, given by

Wx = 4.10(V/pC/mm/m) ·
[
1 −

(
1 + (5)

1.15[s/mm]
1
2

)
exp

(
−1.15[s/mm]

1
2

)]
,

is indicated by the dots.

3 TRANSITION TO THE ASYMPTOTE

To test the validity of Eq. 1 forNcrit (and the applica-
bility of the asymptotic solutions) and to findα, at least
for the longitudinal case, we have performed a series of
MAFIA[10] time domain calculations. We have obtained
the per cell loss factorktot of short Gaussian bunches of
various lengths in structures consisting of a finite number of
cells with infinitely long beam tubes. Although the SBLC
structure is a constant gradient structure, for simplicity, we
use only identical cells, with the dimensions of cell 144
in the real structure, for whicha = 1.20 cm. The bunch

Figure 2: The transverse (dipole) wakefield of representa-
tive cells in the SBLC structure (solid curves). The dashes
give the average, the dots the model fit, Eq. 5.

lengths vary fromσz = 0.1 mm, 0.3 mm, 0.5 mm, and
then in 0.25 mm steps up to 4 mm; the number of cells
vary fromNcell = 1 to 10. A very fine mesh is used (e.g.,
σz = 0.1 mm, Ncell = 10 ⇒ 65 × 106 meshpoints) in
order to obtain good accuracy.

The per cell loss factorktot is plotted as function ofσz

in Fig. 3 (the results are connected by lines). The results
are bounded by two curves representing the single cell so-
lution, given by the Lawson diffraction model [2]:

ktot =
Γ(1/4)Z0c

4π5/2a

√
g

σz
, (6)

with Γ(1/4) ∼= 3.63 andg the cavity gap (i.e., L − t), and
the periodic solution:

ktot =
L

2
√

πσz

∫ ∞

0

ds Wz(s) e
− s2

4σ2
z , (7)

with Wz given by Eq. 4. For bunch lengths larger than
about 2 mm the loss per cell is independent of the number
of cells. For shorter bunches we note that the single cell
results approach the single cell asymptotes, as the bunch
length decreases. Also, for a given bunch length, as the
number of cells increases, the loss per cell asymptotically
approaches the periodic structure curve, however, with a
slight systematic offset (which is not understood). Note
that for a finite number of cells, as the bunch length be-
comes ever shorter the loss again varies asσ

−1/2
z .

To determineNcrit we first calculate the differential loss
factor for each cell from the MAFIA data,κn, defined as
the total loss factor for anNcell cell structure minus that
of anNcell − 1 cell structure, which we then convert into
a function of cell number through cubic spline interpola-
tion (see Fig. 4). In Fig. 4 we note that forσz = 0.1 mm
the curve decreases throughout the range; for the longer
bunch lengths it is rather constant throughout the range. For
the intermediate bunch lengths, however,κn begins by de-
creasing gradually, and then levels off for high cell number.
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Figure 3: The loss factorktot(σz) obtained by MAFIA for a
Gaussian bunch in a structure consisting of a finite number
of cells (1-10) Also shown are the single cell (Eq. 6) and
the periodic structure loss factor.

Upon careful inspection one notices that for these curves
there is also a slight (∼ 3%) dip before the curve reaches
the final, asymptotic value. In Fig. 5 numerical errors prob-
ably account for the slight anomalies that we see in the high
end of the curves for short bunches; nevertheless, the gen-
eral trend of these curves is still correct.

            

Figure 4: The differential loss factor of cellNcell, κn, for
various bunch lengths, as obtained by MAFIA (the results
are connected by smooth curves).

Let us consider 3 different criteria that result in aκn that
is within a few percent of the asymptotic value: (1) the
point in the curve, before the dip, whereκn reaches the
same value as the asymptote, (2) the dip position, and
(3) the position (after the dip) where the curve reaches to
98% of its asymptotic value. Theσz = 0.1 and 0.3 curves,
as well as those for whichσz ≥ 2.0 mm, are not included;
as asymptote we take the value ofκn at Ncell = 8. The
results are shown in Fig. 5, with case 1 given by the x’s,
case 2 by the diamonds, and case 3 by the+’s. Fitting the
data to a power law (Ncrit as a function ofσz) we obtain
as exponent−1.06 in the first case and−0.85 in the oth-

ers. However, given the accuracy of the calculation, we can
say that the results are consistent with the−1 power de-
pendence of Eq. 1. As for the coefficientα, when fitting
to Eq. 1 we obtain 0.5, 0.7, and 1.0 for cases 1, 2, and 3,
respectively. In summary, to obtain an average loss at the
end of a finite length, repeating structure that is within a
few percent of the average loss in the truly periodic struc-
ture the critical number of cells needed is given by Eq. 1,
with α ∼ 0.5 − 1.0.

Figure 5:Ncrit(σz) is obtained from Fig. 4 following 3 dif-
ferent criteria (discussed in the text). The curves are fits to
Eq. 1, taking,α = 0.5, 0.7, 1.0 respectively.
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