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Abstract

This paper presents a new and general tracking method ca-
pable of analysing, in a statistical way, the dipole wakefield
effects on a high-energy charged-particle beam.

1 EQUATION OF MOTION

We consider an electron bunch travelling along a line con-
taining magnetic quadrupoles and RF structures. We notes
the longitudinal coordinate along the line, andz, a rela-
tive position within the bunch (z > 0 at the bunch tail).
We will assume the beam to be fully relativistic so that
the longitudinal distribution of particlesρ(z) is completely
rigid along theŝ axis. For a slice of charge at a relative
position z inside the bunch, we noteδx(s, z) the trans-
verse position (horizontal or vertical) of its centre of grav-
ity, x(s, z) = δx(s, z) + x̃(s, z) the position of any par-
ticle within the slice, andγ(s, z)mec

2 its energy (thus,̃x
describes the betatron motion in the presence of accelera-
tion). Then, the fundamental dynamics relation, projected
on the transverse and longitudinal planes, gives [1]:

x′′(s, z) + γ′(s, z)/γ(s, z) x′(s, z) + k(s, z) x(s, z)

=
e2/mec

2

γ(s, z)

∫ z

−∞
W δ

T (z − z∗) ρ(z∗) δx(z∗) dz∗ (1)

γ′(s, z) = e/mec
2
(
GRF (s, z)− e

∫ z

−∞
ρ(z∗) W δ

L(z − z∗) dz∗)
Here,W δ

L andW δ
T are the longitudinal and transverse

delta-function wake potentials,k(s, z) [m−2] is the qua-
drupole strength seen by the slicez andGRF (s, z) [V/m]
represents the accelerating field along the line1. Summing
Eq. 1 over all the particles of the slicez, we obtain the
equations verified byδx(s, z) andx̃(s, z):
δx′′(s, z) + γ′(s, z)/γ(s, z) δx′(s, z) + k(s, z) δx(s, z)

=
e2/mec

2

γ(s, z)

∫ z

−∞
W δ

T (z − z∗) ρ(z∗) δx(z∗) dz∗ (2)

x̃′′(s, z) + γ′(s, z)/γ(s, z) x̃′(s, z) + k(s, z) x̃(s, z) = 0 (3)

Eq. 3 is the the well-known Hill equation and the classi-
cal theory of the beam matrix andR matrix, not reported
here, can be applied in order to track the “x̃-envelope” of
each slice all along the line2. Eq. 2 has no analytical solu-
tion in the most general case and its numerical treatment is
presented hereafter.

1GRF (s, z)=0 andk(s, z)=Gq(s)e/ (γ(s, z)mc) in quadrupoles,
Gq(s) [T/m] being the step function which describes the quadrupole
gradient within the line;GRF (s, z)=GRF cos (ωRF z/c− φRF ) and
k(s, z) = 0 in RF structures.

2In this model, we see that the motion ofx̃ is totally independent of
the one ofδx; this would not be the case anymore if, for instance, we had
taken into account the quadrupole mode of the wakes.

2 GENERALISED R-MATRIX

By splitting the bunch intons slices of thickness4z, we
can write the integro-differential equation 2 as a vectorial
differential equation of order one and dimension2ns:

X ′(s) = A(s) ∗ X (s) (4)

whereX (s) = [δx(s,z1), δx′(s,z1) . . . δx(s,zns), δx′(s,zns)]
and whereA is the following2ns×2ns matrix:

A=


A0

1 0 . . . 0
A21 A0

2 . . . 0
...

...
...

...
Ans1Ans2. . .A

0
ns

with


A0

i =

(
0 1

−k(s,zi)−γ′(s,zi)

γ(s,zi)

)

Aij =

(
0 0

4zρ(zj)W
δ
T (zi−zj) 0

)
.

The solution of the previous equation can be written as
X (s)=R(s)∗X (0), whereR(s) is a2ns×2ns matrix that
we call “generalised R-matrix in the presence of wakefield”
and which verifies the matricial differential equation:

R′(s) = A(s) ∗ R(s) with R(0) = Id (5)

We can easily see that, like theA matrix, R is a lower
triangular2×2 block matrix: the diagonal blocksR0

ii de-
scribe the motion of the sliceszi without any wakefields

(R0′
ii

5= A0
i ∗ R0

ii) whereas the lower blocksRij , i>j, tes-
tify to the interaction between the sliceszi andzj due to the
transverse wake. Certainly more complicated than a classi-
cal tracking, this method has nevertheless the advantage of
a very practical computation of the beam line sensitivity to
the displacements of its components (next section).

3 BEAM LINE SENSITIVITY
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Figure 1:

Here, we are interested in the effects of transverse mis-
alignments of the beam line components. Assuming the
elements to be totally rigid objects, their position along the
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line can be defined by six parameters (see Fig. 1); first,
we execute a global translation of the component, then,
three rotations, leaving invariant the middle point of the
displaced entry face of the component (I ′in in Fig. 1):

• the horizontal, vertical and longitudinal displacements
dx, dy and andds respectively.

• the rotationθ around the actual vertical axis,̂yin in
Fig. 1, or yaw angle, the rotationφ around the newly
defined horizontal axis,̂x′in in Fig. 1, or pitch angle,
the rotationψ around the newly defined longitudinal
axis or roll angle.

We will forget here the “longitudinal alignment errors”,ds
andψ, which do not create any transverse offset3. Then, we
consider a component of lengthL with the misalignments
dx andθ, and we suppose that the beam goes into the com-
ponent (abscissas0) with the initial conditionsX (s0); us-
ing the previous section, we can compute the beam offset
at the component exit (s1 =s0 + L) in the following way:

X (s1) = R(s0→ s1)
(
X (s1) + Xin(dx, θ)

)
+ Xout(dx, θ)

whereXin(dx, θ) = −[dx, θ, . . . , dx, θ] andXout(dx, θ) =
[dx+ Lθ, θ, . . . , dx+ Lθ, θ] refers to the change of coor-
dinate at the component entry and at the component exit
respectively. Thus, at any abscissasf , we can estimate the
line sensitivity relative to the misalignments of any of its
components; for instance, for a yaw angleθi of the element
numberi, we obtain:

∂θiX (sf) = R(si +Li→sf)
(
Θout(Li)+R(si →si+Li) Θin

)
with Θin =−[0, 1 . . .0, 1] andΘout(Li) = [Li, 1 . . . Li, 1].

Finally, in the same way, we can obtain all the response
coefficients of the line, concerning the initial offset (angle
and position) of the bunch.

4 CORRECTION ALGORITHMS

The simplest alignment methods are based on a correction
of the bunch centre-of-charge deviation measured at one or
several beam position monitors (BPM) within the line by
moving the quadrupoles transversely. More recently, new
correction schemes have been proposed, based on the si-
multaneous minimisation of trajectory deviations and tra-
jectory differences linked to variable quadrupole settings or
linked to variable bunch charge or bunch length [2]. How-
ever that may be, all these correction techniques have in
common the following fact: they all come down to the min-
imisation by moving quadrupoles of a certain functionΦ
which depends quadratically on measurements of trajectory
deviations. Then, it can be shown [3] that after this min-
imisation the vectorX (sf ) (containing the positions and
angles of thens slices at the line output) does not depend
anymore on the quad misalignments before correction but

3For flat beams, the roll angleψ, coupling both transverse planes, may
become critical for the emittance growth in the plane where the beam
dimension is the smallest, but, actually, it is not yet implemented in the
method.

only and in a linear way on the errors of the line4, that we
write in the formal following way:

X (sf )def=Mer dXer (6)

wheredXer is a stochastic vector containing the “errors
of the line” and whereMer is a 2ns×Ner matrix which
depends on the focusing lattice (via the response coeffi-
cients) and on the choice of the correction algorithm (via
the choice of the functionΦ).

5 STATISTICAL BEAM RESPONSE IN TERM OF
EMITTANCE GROWTH

From now on the rest of the paper, the notation<Q>er will
represent the average of the quantityQ over the statistic
distribution of the “errors”, compared to the same notation,
without suffix, referring to an average over the longitudinal
particle distributionρ(z). So, we suppose that the vector,
mer ≡<dXer>er, and the covariance matrix,Γer ≡ <
dXer

TdXer>er −mer
Tmer, are known quantities which

depends on the pre-alignment scheme5.
For the sake of simplification, we will assumemer = 0. By
using Eq. 6, we can compute the average and the covariance
matrix of the vectorX (sf ) at the line output:

m̃
def
= < X (sf) >er = Mer mer = 0

Γ̃
def
= < X (sf) TX (sf ) >er = Mer Γer

TMer

(7)

Nevertheless, for reasons which will appear later, we prefer
to define the symmetric matrixΓ1 ≤ i ≤ 2ns

1 ≤ j ≤ 2ns

by:

Γ2i−1,2j−1= 4Qij

〈
(δx(zi)− <δx>)(δx(zj)− <δx>)

〉
er

Γ2i,2j = 4Qij

〈
(δx′(zi)− <δx′>)(δx′(zj)− <δx′>)

〉
er

Γ2i−1,2j = 4Qij

〈
(δx(zi)− <δx>)(δx′(zj)− <δx′>)

〉
er

1≤ i≤ns , 1≤j≤ns , where4Qij
def
= 4z

√
ρ(zi)ρ(zj) ,

<δx>=

ns∑
n=1

4zρ(zn)δx(zn) and <δx′>=

ns∑
n=1

4zρ(zn)δx
′(zn)

which can be easily computed from̃Γ andρ(z).
The beam matrix of the whole bunch at the line output is

then given by:S =

(
<x2> <xx′>
<xx′> <x′2 >

)
where the nota-

tions used are explained hereafter.

• < x2 > is the RMS value of the transverse beam ex-
tension at the line output. Since the motions ofx̃(z)
andδx(z) are uncorrelated (Section 1), we have:

<x2 >=

∫
dz ρ(z)

[
(σ2

x(z) + (δx(z)− <δx>)2
]

4From now on the rest of the paper, by “errors of the line”, we will
always refer to the structure and BPM misalignments, to the BPM and
correction resolution, and to the initial conditions of the different trajecto-
ries considered in the correction algorithm.

5Here, we will only consider static misalignments of the structures,
resulting from the linac pre-alignment strategy; then, we suppose that the
characteristic time required to apply the correction remains very small
compared to the characteristic period of the machine vibrations (ground
motion).

471



where σx(z) represents the transverse size (RMS
value) of thez-slice at the line output.

• In a similar way, and with evident notations, we have:

<x′2 >=

∫
dzρ(z)

[
σ2

x′(z)+(δx′(z)− <δx′>)2
]

<xx′>=

∫
dzρ(z)

[
σxx′(z)+(δx(z)− <δx>) (δx′(z)− <δx′>)

]
Thus, we can write the matrixS in the following manner:

S = Σ0 +


ns∑

n=1

X2
2n−1

ns∑
n=1

X2n−1X2n

ns∑
n=1

X2n−1X2n

ns∑
n=1

X2
2n

 (8)

whereΣ0 is the beam matrix at the line output, assum-
ing no error within the line6, and whereX is the 2ns-
dimensional vector defined by:

X2n−1=
√

4zρ(zn)
(

δx(zn)− <δx>
)
, 1 ≤ n ≤ ns

X2n =
√

4zρ(zn)
(

δx′(zn)− <δx′>
)
, 1 ≤ n ≤ ns

(9)

the covariance matrix of which is the matrixΓ previously
defined. Finally, the RMS emittance is defined as usual by:

ε
(

X
)

def
=

√
det
(
S
)

(10)

In order to go further in the computations, we are forced to
make the following assumption: we assume the vectorXer

to be Gaussian, so that the vectorX becomes also Gaus-
sian7. Hence, the knowledge ofΓ permits the complete
description of the statistical distributionρX related to the
vectorX :

ρX

(
X
)

=
1

(2π)ns

√
det(Γ)

exp

(
−1

2
TXΓ−1 X

)
(11)

The first and second moment of the emittance distribution
are then:

< ε >er =

∫
R2ns

ε(X) ρX(X) dX

< ε2 >er =

∫
R2ns

ε2(X) ρX(X) dX

(12)

The second moment is easy to compute, since the function
ε2(X) is a polynomial inX of degree 4. For the compu-
tation of the first moment, a direct estimation by numerical
integration is of course out of question (the computation
time growing exponentially with2ns). In fact, we are able
to reduce this integral to a 2-dimensional integral (indepen-
dently ofns) and, under these conditions, we can compute

6Σ0 =
∑ns

n=1
ρ(zn) 4z R0

n,n Σin(zn) TR0
n,n whereΣin(zn) is

the beam matrix of the slicezn at the line input andR0
n,n, the diagonal

block (n, n) of the generalised R-matrix of the whole line, which is also
the classical2×2 transfer matrix describing the motion of the slicezn

without any wakefield (Section 1).
7X depends linearly on the vectorX , Eq. 9, which depends linearly

on the vectorXer , Eq. 6.

it numerically [3].
If now, we noteN(ε), the percentage of machines which
give, a final single-bunch emittance lower thanε, we have:

N(ε) =

∫
ε(X)≤ε

ρX(X) dX =

∫
R2ns

Θ
(
ε − ε(X)

)
ρX(X) dX

whereΘ represents the Heaviside step function. Thus, by
definition of the densityρε, we have:

ρε(ε)
def
=

dN

dε
(ε) =

∫
R2ns

δ
(
ε − ε(X)

)
ρX(X) dX (13)

whereδ is the Dirac distribution. Unfortunately, no solu-
tion was found permitting the estimation of this distribution
in the most general case. Indeed, we have to approximate
ε(X) by its development at the second order in the coeffi-
cients of the vectorX . In other words, we assume that a
perturbation regime has been reached, for which the non-
constant part of the functionε(X) becomes small, when
averaging over the distribution of the beam line errors, in
such a way that the moments of order greater than two can
be neglected. Thus, we write:

ε(X) =
√

det(Σ0)
[
1 +

1

2
TXΓ−1

0 X
]

+ ◦(X4) (14)

whereΓ0 is the following2×2 block diagonal matrix:

Γ0
def
=


Σ0 0 . . . 0
0 Σ0 . . . 0
...

...
...

...
0 0 . . . Σ0

 (15)

Finally, with this approximation, we obtain [3]:

ρε(4ε/ε) =
1

2π

∫ ∞

−∞
dk exp

(
ik(4ε/ε)

)(2ns∏
p=1

(1 + ikλp)

)− 1
2

where4ε/εdef=
(
ε−

√
detΣ0

)
/
√

detΣ0 and whereλp,

1≤p≤2ns, are the2ns eigenvalues of the matrixΓΓ−1
0 .

6 CONCLUSION

Starting from a given probability law for the misalignments
of the beam line components, a given trajectory correction
scheme, and a given focusing lattice, the method computes
the statistical distribution laws of certain quantities relative
to the beam itself. Therefore, the power of this new ap-
proach lies in the fact that it can generate, in one single
passage, statistical results which could be reproduced by a
classical tracking program, but in a much more tedious way
(several runs on several beam lines with randomly gener-
ated misalignments).

7 REFERENCES

[1] A. Chao, B. Richter, C.-Y. Yao,Nucl. Inst. Meth., 178(1980)
p. 1.

[2] T.O. Raubenheimer, K. Kubo,Nucl. Inst. Meth., A370 (1996)
p. 303.

[3] S. Fartoukh. A Statistical Approach to Analyse the Efficiency
of BNS Damping and Correction Algorithms in Linear Col-
liders. CERN/PS 97-06 (LP) (1997).

472


