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Abstract 2 GENERALISED R-MATRIX

This paper presents a new and general tracking method ®y splitting the bunch inte, slices of thicknesg\z, we
pable of analysing, in a statistical way, the dipole wakefieldan write the integro-differential equation 2 as a vectorial
effects on a high-energy charged-particle beam. differential equation of order one and dimensibr:

1 EQUATION OF MOTION X'(s) = A(s) * X(s) 4)

We consider an electron bunch travelling along a line corwhereX (s) = [dx(s,21), 02/ (s,21) . . . 025,25, ), 62" (5,2n, )]
taining magnetic quadrupoles and RF structures. Wesoteand whereA is the following2n, x 2ns matrix:
the longitudinal coordinate along the line, anda rela-

tive position within the bunch ¢ > 0 at the bunch tail). A 0 ... 0 40— 0 ,(1 )
We will assume the beam to be fully relativistic so that | A, 49 ... 0 P —k(s,2) - L2
the longitudinal distribution of particles =) is completely A= , with (s,21)

rigid along thes axis. For a slice of charge at a relative - 0 0
position z inside the bunch, we notéz(s, z) the trans- AnaAng. . A, Aij:(Azp(Zj)W%(Zi—Zj) O) '
verse position (horizontal or vertical) of its centre of grav-

ity, x(s,z) = dz(s, z) + Z(s, z) the position of any par- The solution of the previous equation can be written as
ticle within the slice, andy(s, z)m.c? its energy (thusi X (s)=R(s)*X(0), whereR(s) is a2n, x 2n, matrix that
describes the betatron motion in the presence of accelerge call “generalised R-matrix in the presence of wakefield”

tion). Then, the fundamental dynamics relation, projectegind which verifies the matricial differential equation:
on the transverse and longitudinal planes, gives [1]:

R'(s) = A(s) * R(s) with R(0) =1Id (5)
" (s,2) +7'(s,2)/v(s,2) ' (s,2) + k(s, 2) z(s, 2)
_e&¥/mec® [T s . . o (1) We can easily see that, like thé matrix, R is a lower
T o(s2) ) Wiz —27) p(z7) dw(") dz triangular2 x 2 block matrix: the diagonal blockg?, de-

/ , 2 5 scribe the motion of the sliceg without any wakefields

v (5,2) = e/mec’ (Grr(s, 2) - e/ P2 Wiz —27) d=") (RY 2 A9 x RY) whereas the lower blockB;, i > j, tes-

* tify to the interaction between the slicesandz; due to the
transverse wake. Certainly more complicated than a classi-
cal tracking, this method has nevertheless the advantage of
a very practical computation of the beam line sensitivity to
the displacements of its components (next section).

Here, W and W are the longitudinal and transverse
delta-function wake potentialg;(s, z) [m—?] is the qua-
drupole strength seen by the sliec@andGrr(s, z) [V/m]
represents the accelerating field along thellirgumming
Eq. 1 over all the particles of the slice we obtain the
equations verified byz (s, z) andz(s, z):

3 BEAM LINE SENSITIVITY

8x" (s,2) +7'(s,2)/v(s,2) 62’ (s, 2) + k(s, z) §z(s, 2)

_ &/mec [0 2z — 2%) p(2") 6x(2) dz”
- She [ Wi =)l

3(5,2) +7'(5,2)/7v(s,2) ¥ (5, 2) + k(s5,2) Z(5,2) =0 (3)

Eqg. 3 is the the well-known Hill equation and the classi-
cal theory of the beam matrix an@ matrix, not reported
here, can be applied in order to track theénvelope” of
each slice all along the like Eq. 2 has no analytical solu-
tion in the most general case and its numerical treatment is
presented hereafter. —

@)

STttt Simple case:
dy=y=¢=0

I

Entry face of the | ) X in
I

displaced component !

1GRrr(s,2)=0andk(s,z)=Gq(s)e/ (v(s, z)mc) in quadrupoles, . .
G,(s) [T/m] being the step function which describes the quadrupole Figure 1:
gradient within the lineGrr (s, 2) =GR cos (wrrz/c — ¢rr) and

k(s,z) = 0in RF structures. . . (o
2In this model, we see that the motion dfis totally independent of Here, we are interested in the effects of transverse mis

the one ofz; this would not be the case anymore i, for instance, we ha@lignments of the beam_ line ‘components. .Assuming the
taken into account the quadrupole mode of the wakes. elements to be totally rigid objects, their position along the
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line can be defined by six parameters (see Fig. 1); firspnly and in a linear way on the errors of the fipnéhat we
we execute a global translation of the component, themrite in the formal following way:

three rotations, leaving invariant the middle point of the def

displaced entry face of the componefit {n Fig. 1): X(sp)=Mer dXer (6)
e the horizontal, vertical and longitudinal displacement¥/heredX., is a stochastic vector containing the “errors
dz, dy and andis respectively. of the line” and whereVl., is a2n, x N, matrix which

o the rotationd around the actual vertical axigy, in dePends on the focusing lattice (via the response coeffi-
Fig. 1, or yaw angle, the rotatioharound the newly Ci€nts) and on the choice of the correction algorithm (via
defined horizontal axisi/, in Fig. 1, or pitch angle, the choice of the functio).
the rotationw) around the newly defined longitudinal
axis or roll angle. 5 STATISTICAL BEAM RESPONSE IN TERM OF

EMITTANCE GROWTH
We will forget here the “longitudinal alignment errorgl’s , .
and, which do not create any transverse offs@then, we From now on the rest of the paper, the notatiad> will
consider a component of lengthwith the misalignments fepresent the average of the quant@yover the statistic
dz andd, and we suppose that the beam goes into the corflistribution of the “errors”, compared to the same notation,
ponent (abscissay) with the initial conditionsY (so); us-  Withoutsuffix, referring to an average over the longitudinal
ing the previous section, we can compute the beam offsg@rticle distributiorp(z). So, we suppose that the vector,
at the component exits( = sy + L) in the following way: ~ Mer =<dX.,>c,, and the covariance matrix,,, = <
dXor dX or >er —Mey Mey, are kngwn quantities which
_ - , depends on the pre-alignment schéme

A(s1) =R(s0— 1) (X(Sl) + X'”(dx’g)) + Xou(dr, 0) £l e sake of simplification, we will assume,, = 0. By

using Eq. 6, we can compute the average and the covariance

wherein(dz, 0) = —[dz,0,.. ., dz, 0] andXou(dz, 0) = o e vectorY (s) at the line output:

[dx + LO,0,...,dx + L0, 0] refers to the change of coor-

dinate at the component entry and at the component exit ~ def _ _

- . . m=< X(sf) >er =Mer mer =0
respectively. Thus, at any abscisga we can estimate the ~ def T T )
line sensitivity relative to the misalignments of any of its =< X(sp) X(sg) >er=Mer Ter "Mer
components; for instance, for ayaw anglef the element  Nevertheless, for reasons which will appear later, we prefer
numberi, we obtain: to define the symmetric matrix; < ; < 2., by:

1<j<2ng
aiXS =R(s;+L;—s (@ t(L;)+R(s; —s;+L; @)
o, X (sr) ( £)(Oout(L:) ( ) Oin Tai10) 1= AQ”<(5.T(ZZ)— <Sw>)(5a(z)— <§x>)>
with ©n = —[0,1...0,1] andOouw(L:) = [Li, 1. .. L;, 1]. B / o v
Finally, in the same way, we can obtain all the respons pl2i2 =004 <(5x )= <02">)(0'(ey) — <om >)>er

coefficients of the line, concerning the initial offset (angle Toi 19 = AQZ-'<(59:(Z¢)— <6a>) (62 (2;)— <5x,>)>
and position) of the bunch. ~ ! !

1<i<n., 1<j<n., whereAQu% Azy/pE)pE) |

<6x>:Z Lep(zn)dz(zn) and <6z’ >= Z Lep(zn)dz (zn)
The simplest alignment methods are based on a correctiqn n=1 n=1

of the bunch centre-of-charge deviation measured at one or, . . ~
several beam position monitors (BPM) within the line byWhICh can be easily computed frofmandp(z).
The beam matrix of the whole bunch at the line output is

moving the quadrupoles transversely. More recently, new x> g
correction schemes have been proposed, based on thetsen given by:S = <§x,> <i7;>
multanegus m|n|m|§at|on of tre}Jectory deviations arjd trat'ions used are explained hereafter.

jectory differences linked to variable quadrupole settings or .

linked to variable bunch charge or bunch length [2]. How- ¢ < 2° > is the RMS value of the transverse beam ex-
ever that may be, all these correction techniques have in  tension at the line output. Since the motionsiof)
common the following fact: they all come down to the min-  @nddz(z) are uncorrelated (Section 1), we have:
imisation by moving quadrupoles of a certain functidn ) ) )

which depends quadratically on measurements of trajectory v = / dz p@)[(026) + (92()— <0w>)]
deviations. Then, it can be shown [3] that after this min—; . o _
imisation the vectort (s ) (containing the positions and From now on the rest of the paper, by “errors of the line”, we will
Imisa : f ) g P always refer to the structure and BPM misalignments, to the BPM and
angles of then, slices at the line output) does not depen@orrection resolution, and to the initial conditions of the different trajecto-

anymore on the quad misalignments before correction bags considered in the correction algorithm.

SHere, we will only consider static misalignments of the structures,
3For flat beams, the roll anglg, coupling both transverse planes, may resulting from the linac pre-alignment strategy; then, we suppose that the

become critical for the emittance growth in the plane where the bearcharacteristic time required to apply the correction remains very small

dimension is the smallest, but, actually, it is not yet implemented in theompared to the characteristic period of the machine vibrations (ground

method. motion).

4 CORRECTION ALGORITHMS

where the nota-
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where o,.(2) represents the transverse size (RMSt numerically [3].

value) of thez-slice at the line output. If now, we noteN(e), the percentage of machines which
e In asimilar way, and with evident notations, we have:give, a final single-bunch emittance lower thamwe have:
<z? >:/dzp(z) [Uiz(Z)—F((Sx/(Z)— <5z >)2] N(e) —K(X)<fx (X)dX = R2ns® (e — E(X)> px(X)dX

<wa'>= / d2p@) [020r @)+ (02()— <d2>) (52" (0)— <6z’ >)] (ﬁ?iﬁgﬁgnrgfptﬁgzgtssﬁ?; Hﬁ?ﬁi’?ﬁ step function. Thus, by

: o . _ AN
Thus, we can write the matri& in the following manner: pe(e) I(E) :/ 6(e _ G(X)) px(X)dX  (13)
ne ns R2”s
)P CHETE P CHE o wheres is the Dirac distribution. Unfortunately, no solu-
— f— tion was found permitting the estimation of this distribution

S=%0+ n.

ns ®) in the most general case. Indeed, we have to approximate
> Xon-1Xan > X3, €(X) by its development at the second order in the coeffi-
n=1 n=1 cients of the vectoX . In other words, we assume that a

. . . perturbation regime has been reached, for which the non-
_whereX is the beam matrix at the line output, assUmMggnstant part of the function X') becomes small, when
ing no error within the ling, and whereX is the 2n,- averaging over the distribution of the beam line errors, in
dimensional vector defined by: such a way that the moments of order greater than two can
be neglected. Thus, we write:

9) e(X) = /det(X0) [1 + %Txrglx +o(XY)  (14)

wherel', is the following2 x 2 block diagonal matrix:

Xon—1= 1/L2p(zn) (5x(zn)— <§x>), 1<n<ns

Xon =+/L2p(zn) (61:’(2”)— <6x/>>, 1<n<ns

the covariance matrix of which is the matiixpreviously 0 ... 0

defined. Finally, the RMS emittance is defined as usual by: il 0 X0 ... 0
Fo= . . (15)

¢ (X) aef det(S) (10) 0 0 ... %

. , Finally, with this approximation, we obtain [3]:
In order to go further in the computations, we are forced to

make the following assumption: we assume the ve&igr 1 [ .
to be Gaussian, so that the vecférbecomes also Gaus- p.(Ae/e) = —/ dk exp(ik(ﬁﬁ/e)) H(l + ikAp)

1
2ng 2

sian’. Hence, the knowledge df permits the complete 2m p=1
description of the statistical distributi related to the
Vecto&: M where Ae /% (e — y/det Eo) /V/det ¥y and where),,

1<p<2n,, are the2n, eigenvalues of the matriRl“gl.

1 11,1
px(X) = ————exp (—— XT X) (11)
() ()" \/de(T) 2 6 CONCLUSION
The first and second moment of the emittance distributio

8tarting from a given probability law for the misalignments
of the beam line components, a given trajectory correction
scheme, and a given focusing lattice, the method computes
the statistical distribution laws of certain quantities relative

, ) 12) {0 the beam itself. Therefore, the power of this new ap-
<E Zer = /%f (X) px (X) dX proach lies in the fact that it can generate, in one single
e passage, statistical results which could be reproduced by a
The second moment is easy to compute, since the functiefyssical tracking program, but in a much more tedious way

2 i ial i ; .
e (X) 'Sf{ a;]p?'lynomlal inX of degree 4. For the compu- (several runs on several beam lines with randomly gener-
tation of the first moment, a direct estimation by numerical, - misalignments).

integration is of course out of question (the computation
time growing exponentially witl2n,). In fact, we are able
to reduce this integral to a 2-dimensional integral (indepen- 7 REFERENCES
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