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Abstract

We present an overview of the status of ongoing work on
physics models describing beam matching and halo con-
trol for particle accelerators, particularly high power ion
linacs. We consider moments and various new variables
that more naturally describe beam halo evolution. We com-
pute matched beams and “mode invariants” (analogs of mo-
ment invariants) using primarily symbolic techniques.

1 INTRODUCTION

Future intense ion linacs will require good control of beam
halo. To understand halo production, we consider the evo-
lution of the phase-space distribution in the Vlasov regime.
Since this is a non-imaging application, single-particle mo-
tion and its associated concepts such as aberrations are not
as relevant. What is important is matching the beam to high
order, taking into account nonlinearities such as those that
arise from space charge.

Moments are an example of coordinates for the phase-
space distribution. We can compute the values of the mo-
ments at any time from their initial values by solving the
moment-evolution equations. The idea here is that we di-
rectly solve for the quantities of interest (properties of the
distribution) rather than looking at the single-particle mo-
tion. Our goal is to extend this idea to computing the evo-
lution of the halo, i.e., we are seeking “halo variables.”

2 MATCHING

A matched beam is one whose distribution function
f(x, p, t) is a function of single-particle invariants. For a
linear periodic lattice, for example,f is matched if it is an
arbitrary function of the Courant-Snyder invariant ellipse

f(x, p, t) = F (γx2 + 2αxp + βp2). (1)

Any matchedf will be periodic in time, as will be its mo-
ments. If we see that a moment does not have the same
value at times one lattice period apart, we know the beam
is not matched. This is not true for the single-particle mo-
tion, which always contains a betatron-frequency compo-
nent, even for a matched beam. This is the advantage of
using moments or other coordinates of the distribution. For
nonlinear motion, we still have periodic moments, even
though the single-particle motion is more complicated.

3 HALO VARIABLES

An ideal set of variables would be one that includes a vari-
able that describes the fraction of the beam outside a given
radius. Knowing the evolution equation for such a variable

would allow us to compute and be able to control particle
loss. How close can we come to this goal?

Here, we will begin to answer this question by consid-
ering several different descriptions of beam distributions.
We will compute matched beams for a simple nonlinear
example and, where possible, mode invariants (the analog
of moment invariants) in the new variables. One question
we would like to answer is why we have not been able to
determine the moment invariants for nonlinear motion.

4 LIE-POISSON FORMULATION

We can maintain Hamiltonian structure in distribution coor-
dinates as follows.1 Suppose we describe the solution to the
Vlasov equation with some dynamical variablesGi. Think
of theGi as functionals that map the phase-space distribu-
tion functionf(x, p, t) to numbers (the moments, e.g., in
a moments description). The variablesGi will form a Lie
algebra if we define a Lie-Poisson (LP) bracket in terms of
the ordinary Poisson bracket by

[Gi, Gj ]LP =
∫ ∫

dx dp f(x, p, t)[
δGi

δf
,
δGj

δf
], (2)

whereδG/δf is the variational derivative ofG with respect
to f . The dynamics (evolution of the variables) is given by

d

dt
G = [G,HLP ]LP . (3)

TheLP HamiltonianHLP is derived from the usual single-
particle HamiltonianH by

δHLP

δf
= H. (4)

If the functionalG is an integral over phase space involving
f , x, p, andt, then the variational derivative is the partial
derivative of the integrand with respect tof . In this case,

HLP =
∫ ∫

dx dp f(x, p, t)H(x, p, t). (5)

5 EXAMPLES OF NEW VARIABLES IN
LIE-POISSON FORMULATION

We compute matched beams and mode invariants sym-
bolically using Mathematica[1] for three kinds of vari-
ables: moments, Fourier modes, and what we call his-
togram modes. We define the properties of theLP bracket
and compute aLP Hamiltonian, which then allows us to
compute the time derivatives of a quantity by taking the

1We thank D. Holm for pointing out this approach (private communi-
cation, 1989).
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bracket of the quantity with theHLP . In these examples,
we consider the following single-particle Hamiltonian

H(x, p) =
p2

2
+ k

x2

2
+ k2

x3

3
. (6)

We assume the force constantsk and k2 are time-
independent, which means matched beams are those whose
distributions are constant in time. We compute matches by
requiring theLP bracket of all variables withHLP to be
zero. To compute mode invariants, we assume a function
of the variables and solve for parameters of the function
that result in making the function time independent.

5.1 Moments

Moments are averages of monomials in phase space over
the phase-space distribution. For example,<x2> is de-
fined for continuous and discrete distributions by

<x2> =
∫ ∫

dx dp f(x, p, t)x2 =
1
N

N∑
i=1

x2
i . (7)

TheLP bracket for moments is given by

[<xipj>,<xmpn>]LP = (in − jm)<xi+m−1pj+n−1>.
(8)

We achieve closure for finite order by replacing the above
right hand side with zero if it involves moments of orders
greater than the cutoff value. Note that is hard to recon-
structf from the moments. Fortunately, this is not neces-
sary to compute theLP Hamiltonian, which is simply

HLP =
<p2>

2
+ k

<x2>

2
+ k2

<x3>

3
. (9)

5.1.1 Matched moments

A matched beam satisfies the following relations.

<p2> = k<x2> − 5k2
2

k2 <x2p2> <p3> = 0

<xp> = 0 <x4> = 3<x2p2>
k

<x3> = −5k2

k2 <x2p2> <x3p> = 0
<x2p> = 0 <xp3> = 0
<xp2> = −k2

k
<x2p2> <p4> = 3k<x2p2>

(10)
Any set of moments related this way will be constant in
time. The non-linearity give rises to a nonzero value of
some moments that are of odd degree inx. The matched
distribution does not have elliptical symmetry ifk2 6= 0.

5.1.2 Moment invariants

Moment invariants are functions of moments that are con-
served. With the nonlinearity turned off (k2 = 0), we
find the invariantI22 = <x2><p2> − <xp>2, which
is just the square of the rms emittance, and higher-order
invariants likeI44 = <x4><p4> − 4<x3p><xp3> +

3<x2p2>2, which we already know about (see the review
in Ref.[2]). Our code finds the complete set of functionally-
independent invariants, including those of mixed order
(e.g., containing both second and fourth moments). Mo-
ment invariants for nonlinear motion are still unknown.

5.2 Fourier Modes

Define Fourier modes on a finite region of phase space by

fmn =
1

(2π)2

∫ π

−π

dx

∫ π

−π

dp f(x, p) e−i(mx+np) (11)

TheLP bracket of two of these quantities is

[fij , fmn]LP = − 1
(2π)2

(in − jm) fi+m,j+n. (12)

We attempt closure by zeroing higher modes. Unlike the
situation for moments, this does not preserve all the prop-
erties of a Lie algebra for the truncated system, but we pro-
ceed anyway, in the hope it will lead to something useful.
TheLP Hamiltonian is expressed in terms of the modes by

f(x, p, t) =
N∑

m,m=−N

fmn ei(mx+np). (13)

5.2.1 Matched Fourier modes

For a cutoff ofN = 1, the matched modes satisfy

f−1,0 = (k + k̄)f0,−1 f−1,−1 = k + k̄
k − k̄

f1,1

f1,0 = (k − k̄)f0,−1 f−1,1 = k + k̄
k − k̄

f1,1

f0,1 = f0,−1 f1,−1 = f1,1

(14)

wherek̄ = ik2(π2 − 6)/3. There are nine modes at this
order, so there are three free modes for a matched beam.

5.2.2 Fourier mode invariants

Fork2 = 0, some invariants (truncated at order 1) are

f0,0 = const.
f−1,−1 + f−1,1 + f1,−1 + f1,1 = const.

(15)

The first of these is just the conservation of particles and is
equivalent to<1>=const. for moments.

5.3 Histogram Variables

Let us divide phase space into rectangular bins labeled by
the indicesm in the x-direction andn in the y-direction.
Let both indices range from−N to N (4N2 bins total).
Let the modefmn describe the density in phase space at
the bin specified by the indicesm andn. The following
LP bracket will approximate the correct physics (again, the
truncated system is not exactly Hamiltonian).

[fij , fmn]LP =




(m − i)(n − j)(fin − fmj),
|m − i| = 1 and|n − j| = 1

0, otherwise.
(16)
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Note that closure for these variables is a boundary problem.
If the beam is localized (as are real beams) then closure is
automatic and involves no additional physics approxima-
tions. TheLP Hamiltonian is

HLP =
N∑

m,n=−N

fmn <H>mn , (17)

where<H>mn is the average ofH(x, p) over the bin.

5.3.1 Matched histogram modes

In the continuous case, a matched beam would be elliptical
for k2 = 0. We findN independent modes (bin values)
in a matched beam. Figure 1 shows an example with and
without the nonlinearity. Equal densities in phase space are
depicted by equal gray levels.

Figure 1: Matched histogram without nonlinearity (left)
and with nonlinearity (right).

5.3.2 Histogram mode invariants

For generalk andk2, we found one invariant of degree 1 in
the modes. ForN odd it consists of the sum of all modes
having odd indices and forN even, it consists of the sum
of all modes having even indices. Fork2 = 0, the mode
f0,0 is separately conserved.

6 WEIGHTED MOMENTS

Consider generalizing the moments, not by using a new set
of basis functions, but by changing the weights. Define
“weighted moments” by

<g(x, p)>n =

∫ ∫
dx dp [f(x, p, t)]n+1 g(x, p)

∫ ∫
dx dp [f(x, p, t)]n+1

=

N∑
i=1

[f(xi, pi, t)]n g(xi, pi)

N∑
i=1

[f(xi, pi, t)]n
, (18)

where the basis functionsg(x, p) are monomials inx and
p. The usual moments result when the weight index is
n = 0. For negative values ofn, the halo is emphasized.
Numerical experiments indicate that it is possible to get the
Courant-Snyder parameters for the halo by using weighted
moments with weight indices of aboutn = −2. A LP

formulation of weighted moments is difficult (part of the

problem is that they are defined by a nonlinear functional)
and will not be done here. A nice feature of the weighted
moments is that we already know the dynamics of these ob-
jects. Since the distribution function is constant on phase-
space trajectories, so is any function of it. Thus

d

dt
<g(x, p)>n = <

d

dt
g(x, p)>n , (19)

just as for regular moments. So, we already know the linear
invariants. For example, we have

<x2>n<p2>n − <xp>2
n = const., (20)

which is the weighted-moment analog of rms emittance.
Instead of using higher-order moments to achieve a more

accurate beam description, we can combine second-order
moments of various weights. In the absence of space
charge, moments of different weights do not interact; core
and halo evolve independently. Space charge introduces
coupling through the force constants, which depend on the
spatial moments of all weights.

7 DISCUSSION

Histogram variables are probably not the correct approach
but could be usefully further studied because they so com-
pletely separate the halo and core of the beam. Weighted
moments appear promising because they factor the core
and halo motion in a very desirable way. They can give
us the evolution of the Courant-Snyder parameters for the
core and halo separately; there is no need to go to higher
moments to see the halo. We need not consider higher mo-
ments unless the additional physics they represent is actu-
ally involved in halo generation. Another advantage of this
approach is that it could be used to extend existing codes
like TRACE 3-D[3] to include nonlinear effects.
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