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Abstract would allow us to compute and be able to control particle

. . loss. How close can we come to this goal?
We present an overview of the status of ongoing work on . . ; : .
Here, we will begin to answer this question by consid-

physics models describing beam matching and halo Co@?ing several different descriptions of beam distributions.

trol for particle accelerators, particularly high power ior\N . . :
. . . : e will compute matched beams for a simple nonlinear
linacs. We consider moments and various new variables

that more naturally describe beam halo evolution. We cor‘r‘?—x"’mpIe and, where possible, mode invariants (the analog
N . . " ) of moment invariants) in the new variables. One question
pute matched beams and “mode invariants” (analogs of mo-

. . . L : : we would like to answer is why we have not been able to
ment invariants) using primarily symbolic techniques. . . ; . .
determine the moment invariants for nonlinear motion.

1 INTRODUCTION 4 LIE-POISSON FORMULATION

Future intense ion linacs will require good control of beany,

halo. T q d hal duct ider th e can maintain Hamiltonian structure in distribution coor-
alo. 10 un erstand halo pro _uct!on,_we considert € SVlinates as follow$.Suppose we describe the solution to the
lution of the phase-space distribution in the Vlasov regim

Sj his i ; . licati inal ic| Rasov equation with some dynamical variablegs Think
Ince this Is a non-imaging application, single-particle mogy G; as functionals that map the phase-space distribu-

tion and its associated concepts such as aberrations are I function f(z, p, ¢) to numbers (the moments, e.g., in
as relevant. Whatis importantis matching the beamto high - . . desc;ri;;tion) The variabls will form 'a L'ie"
order, taking into account nonlinearities such as those thglbebra if we define a Li;e-PoissonP() bracket in terms of

arise from space charge. . the ordinary Poisson bracket by
Moments are an example of coordinates for the phase-

space distribution. We can compute the values of the mo- 6G; 6G;

ments at any time from their initial values by solving the G, Gl = //dﬂf dp f(z,p,t)] 57 ’W]’ 2
moment-evolution equations. The idea here is that we di-

rectly solve for the quantities of interest (properties of thavheredG/é f is the variational derivative @ with respect
distribution) rather than looking at the single-particle moto f. The dynamics (evolution of the variables) is given by
tion. Our goal is to extend this idea to computing the evo-

lution of the halo, i.e., we are seeking “halo variables. %G =[G, H,_], .- (3)
2 MATCHING TheLp HamiltonianH |, is derived from the usual single-
A matched beam is one whose distribution functiorpamcIe Hamiltoniantf by
f(z,p,t) is a function of single-particle invariants. For a 0H,,
linear periodic lattice, for examplg,is matched if it is an S = H. (4)

arbitrary function of the Courant-Snyder invariant ellipse
If the functionalG is an integral over phase space involving
f(z,p,t) = F(ya® + 2axp + Bp?). (1)  f, z, p, andt, then the variational derivative is the partial

derivative of the integrand with respectfoln this case,
Any matchedf will be periodic in time, as will be its mo-

ments. If we see that a moment does not have the same
value at times one lattice period apart, we know the beam
is not matched. This is not true for the single-particle mo-
tion, which always contains a betatron-frequency compo- 5 EXAMPLES OF NEW VARIABLES IN
nent, even for a matched beam. This is the advantage of LIE-POISSON FORMULATION
using moments or other coordinates of the distribution. F

H ://dxdpf(x,p,t)H(xap,t)- (5)

RWve compute matched beams and mode invariants sym-

eI%olically using Mathematicfl] for three kinds of vari-
ables: moments, Fourier modes, and what we call his-
togram modes. We define the properties ofithéracket

3 HALO VARIABLES and compute aP Hamiltonian, which then allows us to

An ideal set of variables would be one that includes a varEompute the time derivatives of a quantity by taking the

abl_e that desgribes the fra(_:tion of th_e beam outside a_ giVeNiye thank D. Holm for pointing out this approach (private communi-
radius. Knowing the evolution equation for such a variableation, 1989).

though the single-particle motion is more complicated.
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bracket of the quantity with thé/, .. In these examples, 3<xz?p?>2, which we already know about (see the review
we consider the following single-particle Hamiltonian in Ref.[2]). Our code finds the complete set of functionally-
) ) s independent invariants, including those of mixed order
H(z,p) = b~ i B i kgx—. (6) (e.g., .cont.ammg both s'econd aqd fourth moments). Mo-

2 2 3 ment invariants for nonlinear motion are still unknown.

We assume the force constants and &k, are time- 52 Fourier Modes

independent, which means matched beams are those whose

distributions are constant in time. We compute matches Wdyefine Fourier modes on a finite region of phase space by
requiring theLp bracket of all variables withH, . to be 1 - x
zero. To compute mode invariants, we assume a function f,,, = —2/ dz [ dp f(x,p)e metme) - (11)
of the variables and solve for parameters of the function @7m)? )«

that result in making the function time independent. TheLp bracket of two of these quantities is

—T

1 )
5.1 Moments [fijs Frnnlip = BeE (in —jm) fivmjin.  (12)
Moments are averages of monomials in phase space over _ . _
the phase-space distribution. For exampte;2> is de- We attempt closure by zeroing higher modes. Unlike the

fined for continuous and discrete distributions by situation for moments, this does not preserve all the prop-
erties of a Lie algebra for the truncated system, but we pro-

1 XN ceed anyway, in the hope it will lead to something useful.
’>= [ [dzd tya? ==Y ai. (7) i
<r"> zdp f(z,p,t)x N Z; TheLp Hamiltonian is expressed in terms of the modes by
i=1

N
TheLP bracket for moments is given by fapt)= Y fane "ot (13)
m,m=—N
[<a'p’ >, <a™p">],, = (in — jm)<g T ipi Tl
(8) 5.2.1 Matched Fourier modes
We achieve closure for finite order by replacing the abovegy 4 cutoff of V = 1, the matched modes satisfy
right hand side with zero if it involves moments of orders ~
greater than the cutoff value. Note that is hard to recon- foro=(k+k)fo1 foroq = k+ zfl’l

struct f from the moments. Fortunately, this is not neces- ~ k]i —]_c (14)
sary to compute thep Hamiltonian, which is simply fi0=(k—k)fo,—1 f-11= mfl’l
<p?> <a?> <z3> foa=Jo fir=hia
Hyp="2Z 1} + ko : 9)

wherek = iky(7? — 6)/3. There are nine modes at this

order, so there are three free modes for a matched beam.
5.1.1 Matched moments

A matched beam satisfies the following relations. 5.2.2  Fourier mode invariants

5i2 Forky = 0, some invariants (truncated at order 1) are
<p®> = k<a?> - k—22<x2p2> <p3>=0

5 5 fo,0 = const. (15)
<xp>=0 <at> = 73<xkp > f-1,-1+ f-11+ fi,—1+ fi,1 = const.
<a3> = —5k—k22<x2p2> <x3p>=0 The first of these is just the conservation of particles and is
<z?p> =0 <zpP> =0 equivalent to<1>=const. for moments.
ow _ _ko_ 2 0 ag _ 2,2 _ _
SIpT> = ST <p*>=3k<z 1213) 5.3 Histogram Variables

Any set of moments related this way will be constant irl-et us divide phase space into rectangular bins labeled by
time. The non-linearity give rises to a nonzero value othe indicesm in the z-direction andn in the2y-.d|rect|on.
some moments that are of odd degree:inThe matched Let both indices range from N to N (4N~ bins total).

distribution does not have elliptical symmetrykif # 0. Let the modef.,,, describe the density in phase space at
the bin specified by the indices andn. The following
5.1.2 Moment invariants LP bracket will approximate the correct physics (again, the

. . . truncated system is not exactly Hamiltonian).
Moment invariants are functions of moments that are con-

served. With the nonlinearity turned ofk{ = 0), we (m—19)(n—J)(fin — fmj),

find the invariantl;, = <a?><p?> — <azp>?2, which [fijs frnnlie = |m —i|=1landjn—j| =1

is just the square of the rms emittance, and higher-order 0, otherwise

invariants likely,, = <z*><p*> — d<a3p><ap’> + (16)
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Note that closure for these variables is a boundary problemproblem is that they are defined by a nonlinear functional)
If the beam is localized (as are real beams) then closureasd will not be done here. A nice feature of the weighted
automatic and involves no additional physics approximanoments is that we already know the dynamics of these ob-

tions. TheLp Hamiltonian is jects. Since the distribution function is constant on phase-
N space trajectories, so is any function of it. Thus
HLp = Z fmn <H>mn, (17) d d
mmn=—N £<g(xap)>n = <Eg(xvp)>n’ (19)
where<H>,, is the average of (z, p) over the bin. just as for regular moments. So, we already know the linear

i invariants. For example, we have
5.3.1 Matched histogram modes
In the continuous case, a matched beam would be elliptical <x®>,<p’>, — <ap>? = const, (20)
for k, = 0. We find N independent modes (bin values) . . . . .
in a matched beam. Figure 1 shows an example with aPﬁfh'Ch is the weighted-moment analog of rms emittance.

without the nonlinearity. Equal densities in phase space aremStead ofusing h|g.he'r—order moments to achieve a more
depicted by equal gray levels. accurate beam description, we can combine second-order

moments of various weights. In the absence of space
charge, moments of different weights do not interact; core

and halo evolve independently. Space charge introduces
coupling through the force constants, which depend on the
spatial moments of all weights.

7 DISCUSSION

Histogram variables are probably not the correct approach
but could be usefully further studied because they so com-
pletely separate the halo and core of the beam. Weighted
moments appear promising because they factor the core
and halo motion in a very desirable way. They can give

For generak andk,, we found one invariant of degree 1 in us the evolution of the Courant-Snyder parameters for the
the modes. FoN odd it consists of the sum of all modescore and halo separately; there is no need to go to higher
having odd indices and faW even, it consists of the sum moments to see the halo. We need not consider higher mo-
of all modes having even indices. Fbr = 0, the mode ments unless the additional physics they represent is actu-

Figure 1: Matched histogram without nonlinearity (left)
and with nonlinearity (right).

5.3.2 Histogram mode invariants

fo.0 is separately conserved. ally involved in halo generation. Another advantage of this
approach is that it could be used to extend existing codes
6 WEIGHTED MOMENTS like TRACE 3-D[3] to include nonlinear effects.

Consider generalizing the moments, not by using a new set

of basis functions, but by changing the weights. Define 8 ACKNOWLEDGEMENTS
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