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Abstract

Most high intensity proton rings are at low energy below
transition. Several aspects of the beam dynamics of this
kind of rings are different from the electron or high energy
rings. The transverse microwave instabilities will be dis-
cussed in this article.

1 INTRODUCTION

In recent years, many applications are being considered for
low energy high intensity proton synchrotrons, see for ex-
ample[1]. This kind of rings are different from the electron
or high energy proton rings in several aspects of beam dy-
namics. The transverse microwave instability is the subject
to be discussed in this report.

The transverse beam dynamic equation will be pre-
sented, where it is indicated that among several factors
responsible for the instabilities, the most concerned issue
is the impedance, especially the transverse space charge
impedance.

It will be shown that the conventional transverse space
charge impedance is related to the difference of the space
charge coherent and incoherent tune shifts. The space
charge incoherent tune spread is an important stabilizing
force for the transverse microwave instabilities. Thus, the
transverse space charge impedance is relevant to both co-
herent motion and the tune spread for the Landau damping.

This scenario dominates the transverse beam dynamics
for the low energy proton rings. Many important issues in
the beam dynamics for the electron and high energy ma-
chines become secondary or even negligible effects. On
the other hand, for high intensity rings, the space charge
incoherent tune spread has to be limited, which is likely to
affect the stability margin.

2 BEAM DYNAMIC EQUATION

Consider the transverse bunched beam dynamic equation
with the azimuthal modem = 0[2],

ω − ωβ =
jβeI0

2Rm0γν0ω0

∞∑

n=−∞
ZT (n)Λ2

0(n
′) (1)

whereωβ andω0 are the betatron and revolution frequen-
cies, respectively,I0 is the average beam current,R is the
machine average radius, andm0 is the rest mass of proton.
ZT is the transverse impedance, andΛ0 is the spectrum of
the beam line density form = 0 mode. The notationn′
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denotes the beam spectrum frequency shift due to the chro-
matic effect.

In (1), the beam line density spectrum, the effective spec-
trum lines, the impedance, and the chromatic effect for
bunched beams are relevant to the beam instabilities.

For high intensity proton rings, the bunch has to be long
to reduce the space charge effect. Therefore, the beam line
density spectrum will be narrow, approaching the situation
of coasting beams. The effective spectrum lines will be
few. In other words, the coasting beam criterion will be
more relevant to the transverse instabilities. Now it ap-
pears that the most concerned issue in the beam instabilities
is the impedance, especially the transverse space charge
impedance.

3 TRANSVERSE SPACE CHARGE IMPEDANCE

The transverse space charge impedance is conventionally
defined as[3],

ZTSC = j
RZ0

β2γ2
(

1
b2

− 1
a2

) (2)

whereZ0 is the impedance of free space,a andb are the
average radius of the beam and the average half chamber
height, respectively.

For coasting symmetric beam with non-penetrating
fields, the space charge incoherent and coherent tune shifts
are defined as[4],

∆νinc =
−NRr0

πν0β2γ
(
ε1
b2

+ β2 ε2
g2

+
1

2a2γ2
) (3)

and

∆νcoh =
−NRr0

πν0β2γ
(β2 ε1

b2
+ β2 ε2

g2
+

ξ1

b2γ2
) (4)

whereN is the total number of particles,r0 is the classi-
cal radius of proton,ν0 is the betatron tune with zero beam
current,g is the half pole gap, andε1 andε2 are the Laslett
incoherent electric and magnetic coefficients, respectively.
The coefficientξ1 is the Laslett coherent electric coeffi-
cient.

For the simplified model, we consider circular chamber,
which gives rise to,

ε1 = ε2 = 0, ξ1 = 0.5 (5)

then the incoherent and coherent tune shifts become,

∆νinc =
−NRr0

2πν0β2γ3a2
(6)
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and

∆νcoh =
−NRr0

2πν0β2γ3b2
(7)

For low energy synchrotrons, sinceγ is small, the sim-
plification (5) is approximately right even the chamber is
not circular, see (3) or (4). For bunched beams, we take a
simplified approach, by adding the bunching factorBf to
the denominators of Eqs. (6) and (7).

In the following, we show that,

• The tune shifts shown in (6) and (7) can be ob-
tained by substituting a proper part of the space charge
impedance into the dynamic equation (1).

• The transverse space charge impedance represents the
difference between the coherent and incoherent tune
shifts.

• The incoherent tune shift will be cancelled in the dy-
namic equation, and therefore, it pays no role in the
coherent motion.

3.1 Impedance and dynamic equation

First, we take the chamber part of the impedance (2),

ZT = j
RZ0

β2γ2

1
b2

(8)

For coasting beams, the beam power spectrum is a delta
function, with the amplitude1/2π [2],

Λ2
0(n) =

1
2π

δ(n) (9)

Thus, the summation in (1) is removed.
Now we useI0 = Neω0/2π, andZ0 = 1/ε0c, whereε0

is the permittivity in free space. Also using

r0 =
1

4πε0

e2

m0c2
(10)

andω0 = βc/R, then substituting (8) into (1), we get ex-
actly the space charge coherent tune shift shown in (7).
In other words, the impedance of (8) represents the space
charge coherent tune shift. Similarly, the beam part of the
impedance (2) is relevant to the space charge incoherent
tune shift.

3.2 Transverse space charge impedance

Now substituting the transverse space charge impedance
(2) into the dynamic Eq. (1), we have,

ω − ωβ = ∆νcohω0 − ∆νincω0 (11)

i.e., the transverse space charge impedance represents the
difference between the coherent and incoherent tune shifts.

The impedance (2) is defined based on the deflecting
electromagnetic fields distributed between the beam and
the perfectly conducting wall[5]. Exactly what it means
to the beam motion has to come from the Eq. (11).

Specifically, the transverse space charge impedance rep-
resents neither coherent nor incoherent tune shift. In the
case thata � b, the implied tune shift will be approxi-
mately equal to the incoherent tune shift. However, this
tune shift is increased, while the space charge incoherent
tune shift should be decreased.

3.3 Incoherent tune shift and coherent motion

Writing on the left side of the Eq. (1) by the following con-
vention ,

ωβ = ωβ0 + ∆νincω0 (12)

and also using (11), the Eq. (1) becomes,

ω − ωβ0 − ∆νincω0 = ∆νcohω0 − ∆νincω0 (13)

where the incoherent tune shift is cancelled. This shows
that the incoherent tune shift plays no role in the transverse
coherent motion. Therefore, the beam part of the transverse
space charge impedance, i.e., the contribution of1/a2, is a
redundancy in the dynamic equation.

The writing of (12) is following the longitudinal case,
where one has to write the synchrotron oscillation fre-
quency in the way ofωS = ωS0 + ∆νS,incω0, because
the incoherent frequency shift affects the longitudinal fo-
cusing, which is often called the potential well effect. In
the transverse case, the similar effect is negligible. This is
one of the fundamental differences between the transverse
and longitudinal beam dynamics.

4 TRANSVERSE LANDAU DAMPING

For long bunches, the power spectrum of the perturbation
can be a delta functionδ(n − n1)/2π, where the spectrum
line n1 represents the frequency(n1 +ν0)ω0, because only
the perturbation at these frequencies has a chance to grow.

Also substituting the beam peak currentIp for the aver-
age currentI0, the Eq. (1) becomes,

ω − ωβ =
jβeIp

4πRm0γν0ω0
ZT (n1) (14)

To proceed further, we write the left side of the Eq. (14) as
the frequency spread∆ω = ∆νω0, which will be respon-
sible for the Landau damping.

Note that the Landau damping has two implications.

• If the impedance is real and positive, the system is
stable and the Landau damping is not needed. If it
is negative, then the frequency spread must be larger
than the growth rate to suppress the instability.

• If the impedance is imaginary, then the frequency
spread on the left side must be larger than the coherent
frequency shift on the right side of (14). Otherwise, an
infinitesimal perturbation may cause instability.

The microwave instability criterion is, therefore, ob-
tained as follows,

∆ν >
βeIp

4πRm0γωβω0
|ZT (n1)| (15)
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It remains to clarify the sources responsible for the inco-
herent and coherent tune shifts.

4.1 Incoherent tune spread

For the incoherent tune spread, we consider the following
sources.

• Space charge incoherent tune spread, which is the
largest stabilizing force for the low energy proton syn-
chrotrons. For the high energy machine, the tune
spread is decreased, and its contribution diminishes.
This is one of the reasons that the transverse instabili-
ties is more critical for the high energy machines.

• Chromatic tune spread. For bunched beams, the chro-
matic tune spread is not effective for the weak insta-
bilities with the growth rate comparable to the syn-
chrotron frequency. It is, however, effective for the
strong instabilities.

• Frequency slippage. This tune spread could be can-
celled by the chromatic tune spread, then the trick is
to let the cancellation happen at a stable frequency re-
gion.

• Octupolar tune spread. This tune spread is betatron
oscillation amplitude dependent.

• Finally, the synchrotron oscillation may help. Con-
ventionally, this contribution is estimated as∆ω ≈
ωS = ∆νSω0.

The combined tune spread can, therefore, be written for
the effective frequency(n1 + ν0)ω0 as,

∆ω = ((n1 +ν0)η− ξν0)
∆p

p
+∆νinc +∆νoct +∆νS)ω0

(16)
where∆p/p is the beam momentum spread.

4.2 Coherent tune shift

The coherent tune shifts simply come from mainly two
sources.

• Space charge coherent tune shift.

• Broad band impedance induced tune shift.

It can be observed that if the conventional transverse
space charge impedance (2) is used, then it is relevant to
both incoherent and coherent tune shifts, and it takes effect
on both sides of the Eq. (15).

However, the transverse microwave instability can be es-
timated by taking the sum of the transverse space charge
impedance with the broad band impedances, such as in[6].
If the sum is negative, then the incoherent tune spread is
dominant, and the system is stable. Otherwise, the space
charge incoherent tune spread is not large enough to sta-
bilize the system by itself. It has been shown that this
approach is valid for low energy rings. For high energy

rings, the image effect is often stronger than the direct ef-
fect, however, the image incoherent effect is approximately
cancelled with the coherent effect. Therefore, the approach
is also valid.

5 HIGH INTENSITY PROTON RINGS

Most high intensity proton rings are at low energy below
the transition. At low energy, the space charge incoher-
ent tune spread is relatively large. At high intensity, the
bunch has to be long to reduce the space charge tune spread.
Also to eliminate the longitudinal microwave instability,
the beam momentum spread will be relatively large. Thus,
the chromaticity has to be corrected, and the machine is
likely to work at a region with a slightly negative chro-
maticity. Therefore, the high intensity synchrotrons are dif-
ferent from the electron or high energy proton machines in
terms of beam instabilities.

The issues relevant to the transverse instability of high
intensity proton rings are summarized as follows.

• The space charge incoherent tune spread is an impor-
tant stabilizing force for the transverse microwave in-
stabilities. The transverse mode coupling will not hap-
pen for the low energy machines, because the space
charge incoherent tune spread will be larger than the
synchrotron tune.

• The coherent tune shift comes from the broad band
impedance and the chamber part of the space charge
impedance, both of which are small for low energy
rings, because of the large chamber height and the
small ring radius. On the other hand, for high intensity
rings, the space charge tune spread has to be reduced
as much as one can, therefore, the stability margin will
be affected.

• The chromatic tune spread and the frequency slippage
effect are relatively small. The cancellation of these
effects, of interest for high energy machines, is not
much concerned. Also the higher order mode, such as
m = 1 mode, is not important.

• The synchrotron oscillation can eliminate the damp-
ing effect of the space charge incoherent tune spread
for the transverse rigid bunch instabilities, such as the
resistive wall instability. Careful study, or correction,
will be needed.
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[5] D. Möhl and A. Sessler, Univ. California Report, LBL-42
(1971).

[6] F. Ruggiero, CERN SL/95-09 (AP), LHC Note 313 (1995).

1887


