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Abstract

Beam-beam instability induced by random
fluctuations in size of a strong beam has been studied both
numerically and analytically. In contrast with stochastic
particle motion due to overlapping of nonlinear beam-
beam resonance islands, noise beam-beam instability
exists at any value of beam-beam parameter. Two
conditions are essential to initiate instability: beam-beam
kick has to be a nonlinear function of coordinate and
parameter of the kick has to be a subject of noise.
Meanwhile, the value of beam emittance is conserved
even in noise regime if beam-beam kick is a linear
function of coordinate. It gives an idea to prevent beam-
beam instability using linearization of beam-beam kick.
Compensation scheme utilizing higher order component
in field distribution of the focusing elements is suggested.

1 INTRODUCTION
One of the main problems in ion-ion circular

colliders is a small value of achievable beam-beam tune
shift ξ=0.005. Physical reason for beam-beam limitation
is usually attributed to the excitation of a set of nonlinear
resonances due to a periodic nonlinear kick in linear
system.  Overlapping of nonlinear resonances is an
universal mechanism of stochastic particle instability in
nonlinear systems [1]. Another mechanism of unstable
particle motion is a diffusion, created by a noise [2-5].
This noise can exist, for example, due to mismatch of the
beam with the channel. In this paper we study the noise
which appears in an incoherent beam-beam interaction.
As it is shown below, such a noise can induce beam-beam
instability in much more simple conditions than the
overlapping of nonlinear resonances. Due to the diffusion
character, noisy beam-beam instability does not have a
threshold character and can exists under any value of
beam-beam tune shift.

2  NUMERICAL SIMULATION  OF NOISE BEAM-
BEAM INSTABILITY

Let us consider for simplicity a one-dimensional
model, which is suitable to demonstrate main features of
noise beam-beam instability. Results of this study are
valid for a multi-dimensional problem as well. Particle
motion is described in coordinates (x, p =β dx/dz), where
β is a value of beta-function of collider. Between
subsequent collisions particle experience linear matrix
transformation with betatron angle θ = 2πQ. Beam-beam
interaction is treated as a thin lens with nonlinear beam-
beam kick ∆pn:

xn+1

pn+1
 = cos θ       sin θ

- sin θ         cos θ
  xn 

pn + ∆pn

.         (1)

Beam-beam kick ∆p is expressed by a Gaussian
function of coordinate x, beam-beam tune shift ξ, and size
of the opposite beam σ:

∆p = - 4πξx 1 - exp (- x2/ 2 σ2)

( x2/ 2 σ2)
 .            (2)

Nonlinear kick (2) induces a set of nonlinear resonances,
which are stable, until  islands do not overlap each other.
In Fig. 1 an example of stable beam-beam interaction in
the vicinity of the 6th order resonance is presented. In
simulations, one beam is presented as a collection of 3000
particles. Simulations are done for the value of betatron
tune Q = 3.168, close to the 6th order resonance value
3.16666 (or 6Q=19). From the simulations it is clear that
beam emittance is  stable.
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Fig. 1. Stable particle motion with the values of beam-
beam tune shift ξ =0.005 and betatron tune Q=3.168:
a) beam-beam kick, b) rms beam emittance.
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Another picture is observed if the parameter σ of
beam-beam kick (2) is a subject of noise. In the
calculations, presented in Fig. 2, parameters of the
process are chosen to be the same as those in Fig.1, but
standard deviation σ  is changed from turn to turn
according to the expression:

σ(n) = σ(o) (1 ± u
2

 un)  ,                   (3)

where u is a noise amplitude and un is a random noise
function within the interval (0,1). It corresponds to the
noise in the size of the opposite beam, which can exist
due to small beam mismatch with the channel. The value
of noise amplitude u=0.05 is chosen arbitrary to
demonstrate appearance of diffusion-type instability in the
presence of small random perturbation of beam-beam
kick. As shown in Fig. 2, this noise destroys the stability.
In contrast with Fig. 1, beam emittance expand with time.
Important feature of the noise regime is that this kind of
instability can exist apart from the excitation of nonlinear
resonances. Noise beam-beam instability appears if two
conditions are met:
• beam-beam kick is a nonlinear function of coordinate
• parameter of beam-beam kick (beam standard

deviation σ)  is a subject of noise.

3  ANALYTICAL TREATMENT OF EFFECTIVE
BEAM  EMITTANCE GROWTH

Let us provide analytical estimations of emittance
growth under noise beam-beam interaction. Transfer
matrix after n turns with arbitrary momentum kick at
every turn, ∆pi , is given by the expression [6]:

xn = a cos (nθ + Ψ)  + ∆pi sin (n-i) θ∑
i=0

n-1

 ,

pn = - a sin (nθ+ Ψ)   + ∆pi cos (n-i) θ∑
i=0

n-1

 ,

          (4)

where Ψ is the initial phase of oscillations. Random
beam-beam kick (∆pi ) can be expressed as a function of
unperturbed trajectory. It gives an approximate treatment
of the problem, valid for small values of perturbation.
Suppose that perturbation is a linear function of
coordinate:

∆pi = δi xi.                                     (5)

We study evolution of the root-mean-square (rms) beam

emittance εn = 4 <xn2> <pn2> - <xn pn>2, where
brackets mean averaging on initial phases of particles.
Calculation of  beam emittance growth gives:

εn
2

16
 = [ a

2

2
 +  a

2

4
  δi

2∑
i=0

n-1

 ]
2

 -  

- [a
2

2
 δi sin(2nθ-2iθ)∑
i=0

n-1

 - a
2

4
 δi

2 cos(2nθ-2iθ)∑
i=0

n-1

]
2

 -

- [a
2

2
 δi cos (2nθ -2iθ)∑
i=0

n-1

 + a
2

4
 δi

2 sin (2nθ-2iθ)∑
i=0

n-1

]
2

.         (6)

Analysis of the expression (6) shows that terms
proportional to δ, δ2, δ3 are vanished. Rms beam
emittance is conserved until high order of perturbation:

εn
2

εo
2
 =1+ς(δ4),  ς(δ4) = 1

4
 ∑
i=0

n-1

δi
2δk

2 [1- cos(2iθ -2kθ)]∑
k=0

n-1

. (7)

Above derivations are approximate due to suggestion that
linear beam-beam kick is proportional to the unperturbed
trajectory. Numerical simulations exhibit exact
conservation of rms beam emittance in the linear beam-
beam kick regime. Preservation of beam emittance is
explained by the fact that in case of linear kick a beam of
particles experiences sequence of linear transformation,
each of them conserves beam emittance.
Let us consider now the case when kick is a nonlinear
function of unperturbed trajectory:

∆pi = 4  δi xi
3 .                           (8)

Calculation of rms  beam emittance gives:
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Fig.2. Beam-beam instability under 5% noise in the
parameter σ during particle interaction with ξ = 0.005 and
Q=3.168: a) beam-beam kick, b) rms beam emittance
growth.
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.    (9)

In contrast with linear beam-beam kick the terms
proportional to δ2  in expression (9) do not vanish.
Effective beam emittance growth is then as follows:

εn2

εo2
 = 1 + δ2a4 n +  ζ (δ4) ,                       (10)

ζ (δ4)  = 25 a8   ∑
i=0

n-1

δi
2δk

2 [ 1- cos(2iθ -2kθ)]∑
k=0

n-1

  .  (11)

In the case of nonlinear kick, the beam emittance growth
does not vanish in the first positive term δ2 , which
indicates that nonlinearity is an essential point for
expansion of emittance growth under noise conditions.
Comparison of eq.(10) with eq. (2) gives an expression
for a diffusion coefficient D in beam emittance growth
under noise regime εn/εo = 1 + D n:

D = π2 (ξu)2 .                           (12)

Diffusion coefficient exhibits quadratic dependence on
noise amplitude and on value of beam-beam parameter,
which is confirmed by computer simulations. It indicates,
that noise instability in beam-beam interaction appears
under arbitrary small values of u and ξ.

4  COMPENSATION OF BEAM-BEAM KICK

From results of previous section it follows, that the linear
beam-beam kick preserves beam emittance even in the
case of noise. Therefore linearization of the kick is
expected to be a way to improve particle stability. A
trivial  approach assumes that the opposite beam is
uniformly populated. Another method suggests utilization
of high order components in focusing lenses.
In an axial -symmetric magnetic lens a particle with a
larger radius experiences stronger focusing as compared
with linear law:

∆r'  = - r
f
 (1 + Cs

f
 r

2

f2
) ,                    (13)

where f is the focal length of the lens, and Cs is the
spherical aberration coefficient. The dimensionless ratio
Cs /f indicates significance of lens aberrations and is a
figure of merit of the lens quality. The nonlinear term ~r3

can be used for compensation of the corresponding
nonlinear term in the beam-beam collision. Magnetic lens
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Fig.3. Beam emittance evolution in circular beam-beam
interaction with kick (14), Qx = Qy =3.175 , ξ=0.015 and
5% noise in σ: (top) without compensation; (bottom) with
compensation.

always focuses particles, therefore it can be used to
compensate for beam-beam effect of colliding beams with
opposite charge which also provides mutual focusing.
Suppose beam-beam kick includes only the linear ~ r and
first nonlinear ~ r3 terms:

∆p = - 4πξ r ( 1 - r2

4 σ2
) .                    (14)

Nonlinear terms of beam-beam kick and of aberration
have to be equal each other. Taking into account that
p=β·dr/dz, the condition for compensation is :

(Cs

f
) β

 f3
  = πξ

 σ2
  .                          (15)

Fig.3 illustrates the effect of compensation of the cubic
term in beam-beam kick. As can be seen, beam emittance
is kept constant if a compensation lens is applied.
Nevertheless, the effect of compensation vanishes if
beam-beam kick includes all higher order nonlinear terms
of the Gaussian kick and the compensation kick is still
proportional to r3. Therefore, the suggested compensation
by lens aberration can be applied only to a weakly
nonlinear beam-beam kick.
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