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Abstract

The ion optical characteristics of the injection into the ESR
are calculated up to second order. The three dimensional
model of an ESR dipole magnet forms the basis of our
computations. Special efforts have been spent on an ac-
curate approximation of the lateral stray field over a dis-
tance of 2m, in which the ion beam enters the ESR dipole
tangentially. The reference trajectory and the first and sec-
ond order transformation coefficients are calculated solving
the corresponding differential equations numerically. For
this purpose we have developed a new ion optics section
as part of the MAFIA postprocessing module P. The differ-
ential equations are set up and solved automatically using
the simulated magnetic field distribution. The new imple-
mented section is general and allows the easy calculation
of beam trajectories and optical characteristics correspond-
ing to arbitrary numerically calculated magnetic fields. As
special feature also phase space monitors along a curved
reference trajectory can be defined. We will give a short
introduction into the method and discuss the results in case
of the ESR injection.

1 INTRODUCTION

The location of the Experimental Storage Ring (ESR) [1]
in the whole GSI accelerator complex requires an unusual
beam guide for the injection. Between the inflector and the
in-ring septum magnet the ion beam has to pass the lateral
fringe field of a dipole magnet over a distance of two meters
(figure 1). To get a better knowledge about the influence
of this perturbation on the beam ellipse we have made a
3D simulation of one quarter of the whole dipole magnet.
Further, we have used this simulation results as basis for
numerical calculations of the curved injection line and the
ion optical transfer map up to second order.

   
   

   
   

Figure 1: Layout of the ESR with injection line.

2 DIPOLE DIMENSIONS AND SIMULATION
PARAMETERS

The bending system of the ESR consists of six60◦ sector
magnets with a maximum field strength of 1.6 T. In the fol-
lowing we choose a working point of 1 T. In this case the
effective bending radius is 6.324 m in respect of an effec-
tive field boundary of 4 cm at the magnet ends [2].

            

Figure 2: 3D view of an ESR Dipole magnet.

The magnet has a non-othogonal exit face (exit angle
7.5◦), which leads to difficulties in view of the mesh gener-
ation. Therefore we use a coupled coordinate system [3] as
indicated in figure 3. Further, we take advantage of the two
symmetry planes and decided to shorten the simulated sec-
tor up to17◦ in order to reduce the number of mesh points.

            

Figure 3: Approximated part of the dipole which is used
for the field calculation.

3 OPTICS OF THE INJECTION

Being interested in the optics of the injection, we intro-
duce a local coordinate systemx, y, z along the injection
line as shown in figure 4. The fixed global coordinate sys-
temξ, ψ, ζ is placed at the intersection point of central tra-
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jectory and exit face,ζ points in normal direction of the
dipole’s mid plane.

            

Figure 4: Global and local coordinate system.

In matrix notation the whole injection line can be sub-
divided in three parts: a drift spaceM0 from the inflector
magnet to the dipole, the stray field region of the dipole
Ms and a drift space up to the septum magnet in the ring
M1. The combined mapx1 = M1MsM0x0 describes
the optical transformation of an initial phase space vector
x0 = (x, x′, y, y′, l, δ)0 located at the inflector magnet to
a final vectorx1 = (x, x′, y, y′, l, δ)1 located at the in-ring
septum magnet.

Up to second order the combined map takes the expan-
sion
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and are given byky(s) = −k(s) andkx(s) = h2(s)+k(s).
The first order dispersionDx = (x1
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q′′ijk(s) + kx(s)qijk(s) = fijk(s),

resp.
q′′ijk(s) + ky(s)qijk(s) = fijk(s)

with boundary conditionsqijk(0) = 0, q′ijk(0) = 0 and
varying driving functionsfijk(s). The driving functions

depend on second order field derivatives in normal (x) and
tangential (z) direction and are listed in [4, 5].

In our case the stiffness parameters and driving func-
tions are non-constant and not analytically given. There-
fore we will simultaneously integrate the reference trajec-
tory, evaluate the stiffness parameters and driving functions
and solve the introduced differential equations on the ba-
sis of the simulated field data. To assure the accuracy of
the solution, we tested the procedure on an idealized dipole
magnet with parallel ends[6].

4 SIMULATION RESULTS

4.1 Field Calculations

We have performed a nonlinear calculation of an ESR
dipole magnet with the parameters introduced in section 2
using the static solver S of the MAFIA package[7], which
has been modified to solve the field equations in a coupled
coordinate system. Figure 5 shows the simulation results
for the Field in the mid plane at an azimuthal cut compared
with measurements. The two curves fit very well, the de-
viations are lower than0.1%, which means that the simu-
lated lateral fringe field can be used for further ion optical
treatments. An additional reduction of the real shim height
(4mm) will lead to a better correspondence of the simula-
tion data and the measurments near the shims.

            

Figure 5: Simulated and measured magnetic flux density at
the magnetic mid plane.

4.2 Optics of the Injection Line

We have integrated the reference trajectory for a particle
rigidity of 6.234 Tm using the calculated field data (figure
6). The non-constant field expansion coefficientsh(s) and
k(s) are shown in figures 7 and 8. Further, the integrated
principal trajectories are shown in figure 9 and the first or-
der dispersion in 10. Finally table 5 summarizes the first or-
der results for the combined transformation mapM1MsM0

including the drift spacesM0 andM1 as introduced in sec-
tion 3. The entire path length calculated is 4.13 m.

5 CONCLUSION

The presented calculations give new insight into the real
characteristics of the ESR injection line and serve for the
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Figure 6: Magnetic flux density at the mid plane with cal-
culated reference trajectory.

            

Figure 7: Parameterh(s) calculated for the ESR injection
line.

definition of corrective measures. The calculated coeffi-
cients will be used in TRANSPORT and MAD simulations
of the ESR.
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Figure 8: Parameterk(s) calculated for the ESR injection
line.

            

Figure 9: Principal trajectories of the ESR injection line.

            

Figure 10: First order dispersion of the ESR injection line.

(x1|x0) x x′ y y′ l δ

x 3.62 9.17 0 0 0 0.25
x′ 1.40 3.82 0 0 0 0.14
y 0 0 -0.60 0.68 0 0
y′ 0 0 -0.76 -0.80 0 0
l 0.15 0.32 0 0 1 3.6e-3
δ 0 0 0 0 0 1

Table 1: Calculated first order coefficients of the combined
transformation map.
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