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Abstract

The detuned structure (DS) has been proposed as one pos-
sible design to control the emittance growth of long bunch

trains in linear colliders due to transverse wakefields. A K K

DS typically consists of over a hundred cells with tapering 1" in 1" in
from cell to cell of the order of few microns to decohere the

dipole modes. The design parameters are targeted for two (@) (b)

orders of magnitude reduction in the wakefield experiencagigure 1: (a) The dimensions of a typical cell; (b) Varia-
by the trailing bunch. Field analysis of such a large hetigns of cell dimensions.
erogeneous structure is impractical with finite-difference ... .

. . . fied the cell geometry so that ends of the disks are treated
schemes using structured grids. This paper presents the IID%_flat than ro?md Th)éz methods used include equivalent-
sults from calculations performed on a parallel compute‘? i ' . q

rcuits [1], mode-matching [6], and the open-mode [5]

using a finite-element code based on an unstructured grid. . . .
9 g pansion. Generally the wakefield results obtained from

We discuss the parallel implementation issues and sho cudi litatively with s N
comparisons between simulation results and the wakefigigcS¢ Studies agree qualitatively with measurements. Nev-

data taken on both the NLC and JLC detuned structures ertheless it is of interest to obtain the wakefield from a di-
‘rect simulation of the DS on a numerical grid that models

1 INTRODUCTION closely the exact geometry and dimensions.

There are difficulties in applying numerical field solvers
As all linear collider designs adopt acceleration of longg the DS geometry especially if they are of the finite-
bunch trains to increase luminosity the dilution of the beargjfference (FD) type that employs a structured grid. First,
emittance due to wakefield effects in the linac is an impofy fit the gradual taper ia andb would require mesh sizes
tant problem to overcome in accelerator structure desigge small that the mesh becomes prohibitively large to be
The detuned structure (DS) is considered as one viable Ofractical to simulate on any computer. One can exploit
tion to suppress the long range wakefields that lead to cgrading of the mesh sizes (non-uniform mesh) to reduce the
mulative beam break-up instability. In the DS the cell diyymber of mesh points. But over grading can lead to mesh
mensions are tapered to provide a Gaussian distribution gé|is with such disparate dimensions that convergence may
the most harmful dipole modes so that their detuning rgsecome an issue for the solver. Also, structured grids are
sults in a substantial decrease in the wakefield experiencggh capable of modeling curved boundaries accurately. Di-
by the trailing bunches. Both SLAC and KEK have a DS;gonal mesh can help to provide a better fit but the unusu-
design for their proposed X-Band linear colliders (NLC andyjly |arge aspect ratio can cause the solution matrix to be
JLC). Fig. 1 (a) shows the cell geometry in a typical DSjj|-conditioned.
The unit cell is formed between disks whose aperauaad The finite-element (FE) method has been shown to be
thicknesst vary along the structure according to the distrihjghly accurate and efficient in modeling accelerator struc-
butions shown in Fig. 1 (b). The tapering profile is to  yres [4]. The FE unstructured grid is able to fit small dif-
Gaussian detune the 1st dipole band while that &mplies  ferences in geometry and to refine locally around curved
to the higher bands (3rd and 6th). The cell radius then  poyundaries without significant increase in the global num-
adjusted to tune the accelerating mode to 11.424 GHz gk of elements or degrees of freedom (DOF). The DOF’s

120 degree phase advance across the cell lelagth can be further minimized without loss in accuracy through
the use of higher-order elements. These improvements al-
2 FINITE ELEMENT WAKEFIELD ANALYSIS together are still not sufficient to reduce the problem size

M kefield calculati h b ied out t enough for the simulation to be practical on any high-end
any waketield caiculations nave been carried out 10 agg, . siation. It becomes apparent that more efficient grid-

sess the effectiveness of the DS in wakefield reduction. By ng (adaptive mesh refinement) and more powerful com-
they have all been based on approximate methods becal

tting resources (parallel processing) are needed.
the size of the problem precludes a direct numerical agﬂ— g (b P 9

proach until now. Also, previous analysis have mostly sim- 3 ADAPTIVE MESH REFINEMENT

*Work supported by the Department of Energy, contract DE-Aco3l finite element analysis, .the accuracy of the so!ution im—.
76SF00515. proves as the mesh is refined. The simplest refinement is
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subdomains. Since there is no coupling between the “inte-
rior” DOFs from different subdpmains, and the “interface”
DOFs are far less in numbeK can be reordered in the

form .
- A C
(e %)
Figure 2: (a) Initial mesh; (b) Uniform refinement; (c)whereA is a block diagonal matrix with théth diagonal
Adaptive refinement. block A; resulted from the “interior” DOFs in th&h sub-

domain, whileF' consists of only the “interface” DOFs, and
to subdivide each element over the entire mesh so the if‘ provides the coupling between them.
crease in DOFs scales with the number of subdivisions. A The next step is to decompose the mafias
more cost effective way is to refine adaptively to keep the .
number of extraneous DOFs to a minimum. We use the K = ( I ) O) (A ¢ ) 1)
local integral of the energy density gradient as a criteria cA™ I 0 G
to determine if local refinement is necessary, and stop the _ .
refinement when a specified tolerance is reached. This iw_hereG = F . CA 10}{ Is the S(zrllur complement [2].
dicator turns out to be very effective from our numerical Now, S'anEA IS t_’IOCk diagonalA™"v can.be pomputed
experiments in approximating the optimal mesh for a del parallel W'thou,t mterprocesspr commumcatpq.
sired accuracy. Fig. 2 show an initial mesh, a uniformly _Because the size @ IS relgtwely small, and it is .bIOCk
refined mesh, and an adaptively refined mesh. The two rgl_dl_agqnal, thg cqmmunlcatlon overhead to form it to ex-
fined meshes yield the same accuracy but the adaptiveq citly is not_ significant. Hence, through the degqmposr
refined mesh has half the number of DOFs, thereby pr(B'- n (1), the linear systerf'z = b can be solved efficiently

ducing a significant savings in memory requirement antf parallel. . . .
un tir?]e g g y req The block decomposition (1) is particularly useful and

flexible for providing a framework for parallel implemen-
tation of the linear solvers. It allows us to achieve the par-
allelism for solving the global linear system regardless of

The DS geometry is highly amenable to domain deconfloW the local linear systems are solved.

position for parallel processing because the partitioning is

straightforward. Each cell in the long structure is assigned® TRANSVERSE WAKEFIELDS INTHENLC &
a processing node. In the single program multiple data JLC

(SPMD) model, global data such as meshes and matric@g,e concern over the stability of long bunch trains in next
are distributed to the nodes where global operations can Bgneration linear colliders such as the NLC and the JLC
processed locally. As shown previously in Fig. 1 the cell igs 6 geflection of the beam due to long-range transverse

bounded by half-disks (subdomain) so that sharing of daig, . efields. The wakefield at distances of the order of the
between nodes is limited to the field quantities at the cef|

i N yunch spacing is mainly due to the resonant modes of the
apertures. This way the communication between ”Odeséﬁucture, and in the transverse case, is given by
kept to a minimum, and is achieved using the message pass-
ing interface (MPI). 9 s

The discretization of the Maxwell's equations in the fre- W(s) = A Z K;sin(—) ()
guency domain by FE results in a generalized eigenvalue € i=1 ¢
problem, Kz = AMz. Both M and K are large, sparse wherew;,, K; are the frequency and the kick factor of mode
and symmetric while) is positive definite. We use the ; respectively,V is number of modes excited by the bunch
Lanczos algorithm in the solver for its superior converand N, is the number of cells in the structure. The kick
gence properties which is ideal for computing extremactor is determined from the synchronous voltage
eigenvalues of large problems [3]. With the shift-invert
technique, in each Lanczos iteration one solves the linear
systemKz = b, whereK = K — oM, ando is the shift
introduced to accelerate convergence by better separating
the eigenvalues. Since solving the linear system constitutdgd the stored energy
the most time-consuming operation in the entire program, 1
its parallel implementation is important for high parallel ef- U; = le/|E|2 av + / |B|? dV
ficiency. 2 2

One way to look at the linear system under the domaigis the expression
decomposition introduced earlier is to separate the DOFs
into “interior” ones that reside inside a subdomain (cell) |V;|?

and “interface” ones that are shared by the neighboring K; = Aw;/e)U; 12 L

4 PARALLEL IMPLEMENTATION

Zmazx .
v = E.(ro,2) exp (joiz)dz
C

Zmin
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Figure 5: For NLC: Wake envelope comparison between
R FEM and equivalent circuit method; the circles are mea-
e sured data.

Figure 4: Dipole modes for NLC: (a) frequency vs mode
number; (b) kickfactor vs frequency.

Except for the open-mode method, other wakefield cal-
culations have included only modes from the first two
dipole bands although it is recognized that contributions
from higher bands can be important as well. The open-
mode analysis extends to the higher bands but thus far has
considered only flat-ended disks in the cell geometry. The .
present work takes into account the exact cell geometry afigdure 6: For JLC: Wake envelope comparison between
includes as many higher band contributions as computatiéf=M and open-mode method; the circles are measured
time would allow. data.

geometries and dimensions. The enabling capability is a
6 SIMULATION RESULTS new finite-element program that utilizes higher-order ele-

We have developed a new FE field solver using quadratmem_s’ adap“,ve refinement and parallel processing. The
elements and including both parallelization and adaptivePY t'm? reqylrgd for the’NLC and JLC detuned struclture
refinement features. Written in C++, the program is modu(;_alculatlons is in the ten’s of hours even when contribu-
lar in structure and is compatible with any mesh generatotr'.ons from thougands _Of_ modes are conS|dgred. In t_erms of
We used MODULEF to generate the mesh data for the NLearglleI computing efficiency the speedup increase is close
and JLC DS geometries. The program has been running i Imear. T.hey Ienq support to our assertlon that parallel
the Intel's Paragon XP/S 150 at Oak Ridge National LapCOmputing is practical for accurately analyzing large het-
oratory. This massively parallel computer has 1,024 nodé&$09eneous systems.

with two 75-MFLOPS i860 XP processors and 64 MBytes

memory per node. Based on the one cell per node strategy 8 ACKNOWLEDGMENTS
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