
LEGO: A MODULAR ACCELERATOR DESIGN CODE ∗

Y. Cai, M. Donald, J. Irwin and Y.T. Yan
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

Abstract

An object-oriented accelerator design code has been de-
signed and implemented in a simple and modular fashion.
It contains all major features of its predecessors: TRACY
and DESPOT. All physics of single-particle dynamics is
implemented based on the Hamiltonian in the local frame
of the component. Components can be moved arbitrarily in
the three dimensional space. Several symplectic integrators
are used to approximate the integration of the Hamiltonian.
A differential algebra class is introduced to extract a Tay-
lor map up to arbitrary order. Analysis of optics is done in
the same way both for the linear and non-linear case. Cur-
rently, the code is used to design and simulate the lattices
of the PEP-II. It will also be used for the commissioning.

1 INTRODUCTION

There were many accelerator design and simulation codes
used for designing lattices for the PEP-II[1] largely due to
the complexity of the design. It has been always a dream
during the design stage to have one code that can han-
dle everything correctly: purposely off-aligned quadrupole
inside a solenoid detector, two beams inside a common
quadrupole and non-linear chromatic effects with coupling.
It is clear that a code with object-oriented design and im-
plementation is the most natural and powerful approach to
handle even more complicated modeling efforts during the
commissioning and operation of the machines.

We started to design and implement LEGO two years
ago to generate an environment to simulate single charge
particle dynamics as a primary goal. The first require-
ment for the design was that all physics calculation directly
related to particles shall be handled in a local coordinate
system mounted on the accelerator components. The sec-
ond requirement was to use differential algebra methods
to generate maps and analyze beam dynamics whenever
appropriated[2].

We also wanted any applications developed in this envi-
ronment to be applied to real accelerators in the same way
as a simulated machine. Finally, we tried very hard to make
our design as simple and modular as possible.

2 BASIC CORE LIBRARY

The core library consists of several inter related modules.
They are the parser, beamline, processor, integrator and
patch. These modules are designed to be used most ef-
fectively as parts of a library. However, they can be used

∗Work supported by the Department of Energy under Contract No.
DE-AC03-76SF00515 and DE-AC03-76SF00098

independently as well. For example, a beamline can be
constructed directly without using the parser module.

Parser
Expression
Line
Attribute

Beamline
Element

Cell

 Processor

Apply

Build

Use
Integrator

Kick Propagator

Use Use
DespotProc
TraceTwissProc
PrintTwissProc

Use

Patch

Figure 1: Main Lego Modules

The parser module is for decoding lattice input files. The
main function of this module is to read a given input lattice
file into tables of parameters, element attributes and sym-
bolic beamlines which then build a beamline with a tree
structure for LEGO. The module can be used to parse many
common input formats used in the accelerator community,
for instance the MAD input. We will discuss some imple-
mented formats later in the section on interfaces.

The beamline module is the core of the library. It de-
fines many components commonly used in accelerators and
holds places for the integrators and patches required for
physics calculation. It also provides the interface and hook
for processors to access elements and travel through the
tree-structured beamline sequentially. Together with the
processor, they form a visitor pattern[3]. This creates a
separation between the beamline and its operations. This
is a very desirable feature of a library because additional
operations on the beamline can be added using a processor
without recompiling the core library.

The processor module is the key of the library. A proces-
sor uses the hooks provided by the beamline to manipulate
the data of elements and beamline. Most data processing
performed on elements, integrators or patches is handled by
processors. Applications often use processors to interface
with the beamline. One of the most important processors
in the module sets up the DESPOT integrators for track-
ing. Actually, we can replace the engine of the computation
simply by sending another processor to set up another type
of integrators, for example TRANSPORT matrices. Linear
and non-linear analysis procedures are unaffected by the
swapping of integrators.

The integrator module defines the physics of the beam-

25830-7803-4376-X/98/$10.00 1998 IEEE

transport. An integrator is introduced for the integration of
the local Hamiltonian through the body of element includ-
ing fringe field if needed. Since there are many ways to
approximate the integration, the choice of what kind of in-
tegrators to use for a given type of element is left for users.
In the module, we provide a few processors to set up a con-
sistent set of integrators for instance, DESPOT or TRANS-
PORT matrices. The integrator makes it possible to sepa-
rate the description of physical components and how they
are used in the calculation of physics. This feature is con-
sidered to be one of the major achievements of the library.

global in-plane global out-plane

local in-plane local out-plane

Integrator

patch patch

Figure 2: Lego Concept

The patch module handles element or beamline mis-
alignment. Typically, there are two patches for each mis-
aligned component. One is for the entry right before enter-
ing the element and another for the exit. Similar to the
integrator, the choice of patches can be made by users.
A proper selection of the patch allowed us to handle pur-
posely off-aligned quadrupoles inside the solenoid detec-
tor.

Many important features have been implemented and
tested in the library, for example:

• geometry and survey,
• symplectic integrator,
• synchrotron radiation,
• linear optics,
• element by element tracking,
• non-linear map extraction to arbitrary order,
• fast map tracking,
• non-linear map analysis.

In additional to these closely related modules, we have
many independent modules, such as differential algebra,
matrix, vector, geometry, fitting and map modules.

3 DESIGN FEATURES

There were many tradeoffs made during the design stage.
The most important one is the introduction of the integrator
class. In principle, we could carry integrators in a processor
while going through a beamline. However, this approach
will slow down multi-turn tracking significantly because

an integrator needs to be constructed in the element before
each calculation. In our design, integrators are saved on the
beamline so that setting up integrators only has to be done
once.

Similar to the integrator, we also decided to save patches
on the beamline for the reason of speed. Actually we gain
more than just the speed. Stored patches also allow us to
place an element on an existing geometry. This feature is
crucial when we are dealing with two beams in the same
detector or magnet.

Integrators and patches may be used to carry parameters
of the differential algebra. For example, when we study
beam-based alignment of quadrupoles the patches for the
quadrupole magnets are replaced with parameterized ones
so that we can calculate the response of the beam trajec-
tories to their alignemnts. This mechanism of extracting
responses is very powerful and conceptually simple.

In the element class, we have built up an inheritance
structure that reflects a building-block concept and the per-
turbative nature of the accelerator theory. The first layer is
called “chart” to note the zeroth-order perturbation, namely
those elements needed to define geometry and coordinates
system. Then the second layer is for components which
carry additional attributes for the optics and higher order
perturbations.

 Element

Beamline

 StraightChart ArcChart SrotChart

 Sbend Quadrupole Sextupole

Figure 3: Lego Element Classes

4 APPLICATIONS

Building upon the core library, we have written many use-
ful application programs. They are commonly used to eval-
uate the performance of the machines when many aberra-
tions are present. Among them, the simplest procedures
adjust tunes with two families of quadrupoles and chro-
maticities with sextupoles. To make a global coupling cor-
rection, we implemented a scheme of four families of skew
quadrupoles to zero out the four coupled elements in an
one-turn matrix.

For control of the closed orbit, we have implemented
the widely used three-bump method. Recently, we added
a more powerful scheme correcting orbit and dispersion
simultaneously using orbit steering correctors based on
eigen-vector decomposition and the MICADO method[4].

2584

Finally, to prepare for the commissioning of the high en-
ergy ring(HER) this year, we wrote a beam-based align-
ment package to determine misalignments of quadrupoles
and offsets of beam position monitors. The method of anal-
ysis is to fit the beam trajectories for several quadrupole
configurations differing by a large percentage in strength
while treating the circular accelerator as a single-passage
beamline.

Similar to the beam-based alignment scheme, by kick-
ing the beam with correctors and then measuring the
beam positions, we can work out the errors of strength
in quadrupoles and correctors and gains of beam position
monitors. This scheme can be applied to both storage ring
and transport beamline.

All the application packages have been simulated for the
PEP-II lattice under various conditions and have worked
well. They will be applied to the HER soon.

5 INTERFACES

In order to use the applications effectively, we wrote many
interfaces to the control system of PEP-II and other exist-
ing programs. First, in the parser module, we have imple-
mented two builders for decoding MAD input decks and
skeleton decks used in the control system. We are defining
our own standard input format to accommodate the new
types of element allowed in LEGO.

SLC Control Sytem

Configration BPM Config Steer Config

 LEGO

Skeleton Deck

LGPS Config

Figure 4: Interface to the control system

Furthermore, we have added the feature of loading con-
figurations and beam position monitor files from the control
system to the LEGO beamline so that we can build an off-
line model easily in the control room and then apply the
application programs to the accelerators. This feature also
complys with the requirement that an application be used
in the same way for both simulated and real machines.

Since the RESOLVE program has proved very useful
for commissioning of accelerators, we have developed
interfaces[5] so that we can use RESOLVE as a graphi-
cal tool to identify machine errors. We plan also to add
a graphical user interface for the applications mentioned
earlier.

We have linked Zlib[6] to LEGO for extracting non-
linear parameterized maps and for non-linear map analysis.

6 SUMMARY

We have created an object-oriented environment for simu-
lating accelerators. It becomes a very efficient tool box to
develop new applications both for simulation and operation
of accelerators. In this approach, we have achieved five
important design specifications. Four of them are related
to the modularity of design. They are:
• separation between input language and physical

description of element,
• separation between description of element and com-

putational usage of element,
• separation between beamline and its operations,
• separation between analysis of physics and underlining

method of transport.

These separations make LEGO very flexible to use and
adaptable to challenging design and simulation conditions,
like the interaction region of the PEP-II.

The last achievement is the common interface both for
simulated machines and real accelerator for all applica-
tions.

7 ACKNOWLEDGMENT

We would like to thank Scott Berg, Jim Holt, Chris Iselin,
Leo Michelotti, Nick Walker and Johannes van Zeijts for
many stimulating and passionate discussions about class
design during the CLASSIC meetings. We benefited very
much from those discussions. We would also like to thank
E. Forest for explaining the physics and procedures imple-
mented in TRACY and DESPOT.

8 REFERENCES

[1] “PEP-II: An Asymmetric B Factory,” Conceptual Design Re-
port, SLAC-418, June 1993.

[2] Y. Cai, J. Irwin, Y. Nosochkov and Y.T. Yan, “Computational
Tools and Lattice Design for the PEP-II B-Factory,” AIP Con-
ference Proceedings 391, CAP 1996,

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Patterns, Elements of Reusable Object-Oriented Software,”
Addison-Wesley Professional Computing Series, 1994

[4] M. Donald, Y. Cai, H. Shoaee and G. White, “An Orbit and
Dispersion Correction Scheme for PEP-II,” these proceed-
ings.

[5] M. Lee et at., “Lattice Commissioning Strategy for the B-
Factory”, these proceedings.

[6] Y.T. Yan, Y. Cai and J. Irwin, “A Flexible-Variable Truncated
Power Series Algebra in Zlib,” these proceedings.

2585

